Posts

DISTANCE, WORRY-FREE, OR LOW COST

Choosing The Right Battery For Your Situation

When selecting a set of batteries for your golf car, there are a lot of terms to understand, such as amp-hour ratings, capacity at hourly rates, minutes of discharge, and more. It’s a lot to take in and comprehend, and even when you do, it isn’t easily understood how these terms apply to your particular application.

 

Now that deep-cycle batteries are available in three basic chemistries, Lithium-Ion, AGM, and Flooded Lead Acid (FLA), battery selection can be easier by matching the battery type to your real-world needs.  

 

DISTANCE

 

Resorts, retirement centers, and gated communities are growing larger and expanding over vast landscapes. So, having a golf car battery with enough capacity to go longer distances on a single charge is becoming more important in these communities. While all three battery chemistries can do the job, Lithium-ion batteries typically have the advantage of having greater capacity on a single charge at a reduced weight (albeit at a much higher cost per watt-hour). Going farther and longer in your golf car has its advantages. Lithium-ion batteries such as U.S. Battery’s ESSENTIAL Li™ Lithium-ion batteries have longer run times, charge faster, and are safe to use on virtually any make and model of golf car.

 

WORRY-FREE

 

Some golf car owners want to get in their vehicles and go without worrying about weekly or monthly maintenance schedules. Some owners don’t like having to access the batteries or changing them if something goes wrong. AGM batteries offer that kind of worry-free operation and are especially great for those vehicles where accessing the battery compartments is tricky or too tight to reach. Matching the correct voltage and capacity to your golf car’s needs with an AGM chemistry deep-cycle battery will give you lots of worry-free operation.

 

LOW COST

 

There are also frugal golf car owners that want the least expensive battery in their golf car, or at least the most cost-effective battery they can get. These owners don’t want to or do not have the means, to spend lots of money on the latest Lithium or AGM chemistry batteries, which typically cost more initially. Fortunately, Flooded Lead Acid (FLA) batteries are still the most cost-effective type of chemistry per watt-hour. If you’re willing to maintain them on a routine schedule, they can also last a long time before their life expectancy runs out.

 

While this type of battery selection showcases the advantages of each chemistry, keep in mind that any battery type can work in these situations if carefully selected. But looking at battery selection in these three basic applications can, at the least, give you a good starting point in choosing an optimized battery for your particular application. In the end, it’s still important to talk to your golf car specialist or battery dealer, who can also help you decide which battery is right for you.

 

 

Maximize Battery Charger

MAXIMIZE YOUR LIFT’S BATTERY CHARGE PROFILE

In the same way, that different deep-cycle battery designs vary in capacity and overall performance, charging the battery can be as unique as the battery itself. Because deep-cycle batteries in various vehicles and machinery can differ in their work environment, the battery’s capacity and performance are susceptible to how they are charged and maintained. Battery manufacturers like U.S. Battery work with charger manufacturers such as Delta-Q to develop various charging profiles for particular battery sizes and designs to maximize your lift’s battery performance. Ultimately, the overall performance of any work platform comes down to how well the batteries are maintained, the depth of discharge, and the “charge quality” during each recharging session.

According to Delta-Q, the manufacturer has more than 50 charge algorithms on hand for a variety of batteries. To determine how to give your equipment’s battery the best charge, you need to understand what charge algorithms are. There are different charge algorithms available on many battery chargers, but to understand this, you first need to know that there are basically three stages of battery charging. The first is a Bulk Stage, where the charger uses constant current at full charger output to bring the battery to approximately 80% state of charge. The second stage is Absorption Charge using constant voltage where the charge current tapers from full charger output to a lower level that depends on battery conditions. The charger allows the battery to control the charge rate at which it can accept a charge until 100% of the amp-hours removed on the previous discharge are returned. At this point, the battery is not quite fully charged and requires a controlled overcharge. The third stage is the Finish Charge, where the charger gives the battery a lower constant current charge at a charge rate that is proportional to the design capacity of the battery. Assuring the battery is fully charged and provides enough gassing to mix the electrolyte to prevent electrolyte stratification.

During these three charge stages, charge algorithms can differ in current, voltage, time, and amount of overcharge. Charge algorithms are adapted to optimize charging for specific battery models and chemistries. To begin with, there are three primary types of algorithms. SPECIFIC charge algorithms that are custom designed in collaboration between the charger manufacturer and the battery manufacturer and are used by most Original Equipment Manufacturers (OEM) of access lifts and machinery. For performance and warranty reasons, lift OEM’s use a specific battery and therefore require a particular charge algorithm to maximize the battery life for the performance and use environment of the equipment. Depending on the battery chemistry and its use, the charge time and current applied during these three stages can vary to provide the best possible balance between cycle life, runtime, and overall battery life.

Some charger manufacturers use GENERIC charge algorithms designed for particular battery chemistries (such as flooded lead-acid, AGM or Gel) and a wide range of amp-hour capacities. Each chemistry requires a different charge algorithm and amount of overcharge. According to charger manufacturer Delta-Q, a generic charge algorithm will provide a reasonable compromise between battery life and performance. Generic algorithms provide greater flexibility between battery makes and models, especially if the owner decides to change to a different battery when it’s time for the battery to be replaced.

Some charger manufacturers offer UNIVERSAL charge algorithms that can be used for all types of batteries, and most battery manufacturers do not recommend the use of these algorithms. If used, battery state of charge and temperature should be carefully monitored to prevent undercharge or overcharge that could severely decrease battery performance and life.

Ultimately, the best way to get the most out of your batteries, and your lift equipment, is to consult with the manufacturer and/or look up the charge algorithm they have for the specific battery in your equipment. The battery charger should use that specific charge algorithm; allowing you to get the most out of your batteries and ultimately your equipment. For more information on batteries and charging profiles, visit www.delta-q.com.

U.S. Battery FLA Date Code

How Old Or New Are Your Deep-Cycle Batteries?

Used and refurbished battery-powered equipment are abundant and are often found at great prices. Although the vehicle may be in good working order, it’s important to determine how old the deep-cycle batteries are. In most cases, battery manufacturers stamp or etch a date code on the battery indicating the month, year, and location of manufacture.

Reading the Date Code

U.S. Battery uses a stamped code on the terminals of its flooded lead-acid batteries. The top left letter stamped on the terminal correlates to the month it was manufactured (A-L refers to January to December). In this example, the letter “K” is the 11th month indicating the battery was manufactured in November. The number indicates the year 2014, and the bottom letter specifies the U.S. Battery plant where it was produced.

U.S. Battery Mfg. Co. Plant Codes

  • The letter “X” is for  Corona, California plant.
  • The letter “Y” is for  Augusta, Georgia plant.
  • The letter “Z” is the Evans, Georgia plant.

U.S. Battery Mfg. Co. AGM Date Code

On U.S. Battery AGM Batteries,  the date, month, and year on the battery case are etched into the top of the battery and are clearly visible. The date is in the format of DDMMYY or YYMMDD. In this example, September 15, 2014.

US Battery AGM Deep Cycle logo

US Battery Manufacturing Updates Its AGM Battery Line With A New And Improved Performance Deep-Cycle Design

U.S. Battery Manufacturing has launched its new and improved line of AGM Deep-Cycle batteries specifically designed to provide increased deep-cycling performance. “Our advanced line of AGM Deep-Cycle batteries have features that improve cycling performance and longevity, which makes them a better choice for customers wanting maintenance-free reliable operation,” says Zachary Cox, U.S. Battery VP Operations.

The new AGM Deep-Cycle batteries will be available after March 22, 2021, with updated features such as the use of thick positive alloy grids for exceptional corrosion resistance, high-density positive active material, and advanced glass mat separators. These components work together to maintain the battery cell structure during deep-cycling, limit acid stratification, and inhibit internal shorts.

The batteries also feature a carbon-enhanced negative active material that improves charge acceptance and cycling performance. In addition to being resistant to vibration, fully sealed, and maintenance-free, U.S. Battery’s new AGM design improves reliability, overall performance, and delivers longer cycle life.

In addition to these design upgrades, U.S. Battery’s AGM Deep-Cycle line will also have a new look, featuring a new case and graphics on redesigned labels. On top of the current 6V, 8V, and 12V models, the product line is also expanding to include new 6V and 12V options. “More of our customers are asking for high-performance deep-cycle batteries that are maintenance-free and cost-effective alternatives to lithium,” says Don Wallace, U.S. Battery COO. “We’re responding with engineering that delivers the superior performance and reliability needed for modern battery-powered equipment and vehicles.”

U.S. Battery’s complete line of AGM and Flooded Lead-Acid Deep-Cycle batteries are available for a wide variety of applications such as EV Golf Car & Utility, AWP, RV, Marine, Floor Cleaning Machines, and Renewable Energy.

 

Four Wheel Campers - SLide-iN Camper

Pop-Up Camper Manufacturer Four Wheel Campers, Relies On U.S. Battery Products

With the surge of Overlanding at an all-time high, Four Wheel Campers has become the go-to brand for adventurers who travel beyond traditional camping locations. “Because many Four Wheel Campers customers venture to faraway places like Alaska, Baja, Central America, South America, and the remote southwest, they expect undeterred performance,” says Dan Welty, VP at Four Wheel Campers. “Their requirement for uninterruptable power over a longer period of time is essential. To meet this demand, we have selected U.S. Battery Manufacturing products as our sole supplier of AGM 12 and 6-volt batteries. Four Wheel Campers and our customers count on the performance and reliability U.S. Battery products provide. Having a national resource that warranties and services the occasional problem is required, and comforting insurance as well.”

The company was founded in 1972 and is the world’s leading producer of pop-up campers for trucks. The entire operation is located in Woodland, just outside of Sacramento, California, and over the years has become the go-to brand for those adventuring beyond traditional camping locations. The campers themselves fit into the bed of most full-size pickup trucks and feature a welded aluminum frame, one-piece aluminum roof, and aluminum siding. Wearable components like the collapsible pop-up material (typical 20-year life) can be replaced at the factory or dealer locations.

Four Wheel Campers can come equipped with one or two 12-volt or 6-volt U.S. Batteries. These batteries are recharged by the truck as it is Four Wheel Campers Interiordriving or by solar panels on the camper roof. “We have numerous customers living full-time with a combination of this power and occasionally plug into external (shore) power,” says Welty. “With two 6V batteries, our customers can run the refrigerator, numerous camper lights, and power smartphones for two days. With the 160 watts solar and, or truck driving, customers can be off-the-grid indefinitely.”

U.S. Battery AGM batteries are sealed and do not require watering. They feature low self-discharge rates, along with rigid-mounted and tightly packed battery cell plates to withstand shock and vibration found in motive power applications. These components work together to improve reliability, overall performance and deliver longer cycle life.

For more information on Four Wheel Camper products, visit https://fourwheelcampers.com.

Nilfisk floor cleaning machine

Replacement Batteries For Nilfisk Floor Cleaning Machines

Choosing the right deep-cycle batteries for Nilfisk Retriever and SRModel Ride-On-Top floor cleaning machines

Nilfisk is one of the leading manufacturers of battery-powered floor cleaning machines that last a long time. Many older models are still in use with maintenance crews that utilize these vehicles on a full-time basis. With proper maintenance, the deep-cycle batteries can last several years but eventually will need to be replaced. Here are some of the best replacement batteries with some options for SR and Retriever sit-on-top models.

The Nilfisk Retriever 4000B and 4600B model cleaning machines, as well as the Nilfisk SR1100B machines, require a 24-Volt battery pack that fits a Group Size 902 deep-cycle battery.  U.S. Battery manufactures a US 305XC2 deep-cycle battery that is a direct replacement that provides 310 amp-hours at a 20-hour rate. If the vehicle will be under severe working conditions requiring longer operating times between charges, U.S. Battery also has a High Capacity battery for these vehicles, a US 305HCXC2, which provides 340 amp-hours at a 20-hour rate.

There are several models of the Nilfisk SR ride-on-top floor cleaning machines that require different size batteries because of the size and shape of the unit. For Nilfisk SR1000B and SR1005B models that require a 24-volt battery pack with a group size 31 battery, U.S. Battery offers it’s US 31DSXC2 deep-cycle battery that provides 130 amp-hours at a 20-hour rate.

Nilfisk SR100ECO models utilize a group size 24 battery and operate with a 12-volt system requiring two 12-volt batteries. U.S. Battery’s US 24DCXC2 is an optimum choice for a replacement with an 85 amp-hour rating at a 20-hour rate. Larger Nilfisk SR1300B models also have a 24-volt system but can operate with longer runtimes with four 6-volt batteries in the 903 group size platform. U.S. Battery’s US L16XC2 deep-cycle batteries are a popular choice, providing 385 amp-hours at a 20-hour rate. Greater capacity can be achieved with U.S. Battery’s US L16HCXC2 high-capacity batteries that are rated at 420 amp-hours at a 20-hour rate.

The Nilfisk SR1300ECO floor cleaning machine utilizes a 24-volt system requiring two 12-volt deep-cycle batteries in a group size 27. U.S. Battery’s US 27DCXC2 makes a great replacement, providing 105 amp-hours at a 20-hour rate.

Proper Maintenance Adds Battery Life

To get the most performance from your new battery, you must develop a regular maintenance schedule that consists of:

  • Checking and replenishing the electrolyte levels. Installing a BWT or Flow-Rite single-point-watering kit can make this an easy and quick process.
  • Performing an equalization charge
  • Checking and Cleaning battery terminals and connections
  • Performing an opportunity charge when possible

For a full list of proper Deep Cycle Battery Care & Maintenance procedures, please see our page or download our Care & Maintenance brochure. U.S. Battery Deep Cycle batteries are handcrafted in the U.S.A. The batteries also feature our exclusive XC2 formulation that produces increased initial capacity, fastest cycle-up time to full-rated capacity, improved recharge-ability, and the highest total energy delivered than any battery in their class. For a complete list of Flooded Lead-Acid or AGM batteries for all types of floor cleaning machines for various make and manufacturers, U.S. Battery’s Floor Machine Battery page to see all of the models, sizes, and specifications available to fit your particular vehicle.

 

Renewable Energy Storage Options: AGM vs FLA Batteries

Energy-conscious businesses and homeowners who are looking to store energy from their wind or solar energy systems, often consider the differences between using a no-maintenance AGM (Absorbed Glass Mat) and an FLA (Flooded Lead-Acid) deep-cycle batteries. While each type of battery has its advantages, here are some facts that can help you make the right decision for your particular application.

 

Higher Cost, Lower Maintenance

 

If you want a low maintenance renewable energy system’s battery bank, a set of AGM batteries are the ideal choice. Deep-cycle models can be successfully used for energy storage. Because they are sealed and featured glass matt separators that retain all of the electrolyte without water, there’s no need to periodically add water.

 

The drawback, according to U.S. Battery Senior VP of Engineering Fred Wehmeyer, is the cost. “AGM batteries typically cost from 25 to 50 percent more per watt-hour compared to FLA batteries,” says Wehmeyer. “Besides, AGM batteries may also not last as long as premium FLA batteries used in these types of applications.”

 

Lower Cost, Higher Maintenance

 

When lower total operating costs are the goal, FLA batteries offer the lowest cost per watt-hour than any other type of battery storage system available. According to Wehmeyer, deep-cycle FLA batteries are robust and have been used very successfully for energy storage for several decades. “Less expensive than AGM batteries, FLA batteries offer the best cost per watt-hour than any other energy storage method available,” says Wehmeyer.

 

If you’re not opposed to routine maintenance, Wehmeyer adds that premium FLA batteries (those with higher lead content) will last longer than AGM batteries. Because FLA batteries lose water from evaporation during charging, they need to be regularly replenished, as well as cleaning and checking the terminals. Wehmeyer also recommends to occasionally performing an equalization charge on FLA battery banks used for energy storage. “Equalization charging is extremely important to optimize the life of renewable energy batteries,” he says. “It is used to both balance the individual cells in a battery pack and to mix the electrolyte through gassing to prevent electrolyte stratification.”

 

Gaining Optimum Performance From Both

 

No matter what type of batteries you choose for your renewable energy storage, deep-cycle batteries work best when the depth of discharge of your battery bank is kept to 50-percent. “For best performance and longest life, the batteries should be fully recharged regularly,” says Wehmeyer. “Depending on the source of recharge provided (solar, wind, generator, or AC power), full charging may not always be possible every day. Most batteries can operate efficiently in a partial state of charge condition as long a full charge is done at least every 30 days.”

AGM and Flooded Deep-Cycle Batteries

Understanding the Differences Between AGM And Flooded Deep-Cycle Batteries

When it comes to powering electric vehicles like golf carts, deep-cycle lead-acid batteries are the industry standard. The reason is that they are designed to provide the most cost-effective energy storage and delivery over the life of the battery.

Over the years, there have been two main types of deep-cycle lead-acid batteries that many golf car owners and fleets have used, the Flooded Lead-Acid (FLA) battery and the Absorbed Glass Mat (AGM) battery. While both provide optimum performance in a wide variety of applications, their design difference can offer various advantages depending on the application.

Engineering

The main design difference between FLA and AGM batteries is how the electrolyte is managed. In FLA batteries, the battery plates are submerged in the liquid electrolyte. During use, water in the electrolyte is broken down into oxygen and hydrogen gases and water is lost. This requires regular additions of water to be replaced to keep the battery plates fully submerged in the electrolyte.

In AGM batteries, the electrolyte is absorbed in special glass mat separators that retain all the electrolyte needed for the life of the battery.  Since there is no free electrolyte, the oxygen generated on a charge is recombined at the negative plate.  In normal operation, hydrogen is not generated and no water is lost.  This eliminates the need to add water and also allows the battery to be sealed with a one-way valve that prevents leakage of the electrolyte.

Performance Differences

FLA batteries have been used in a wide variety of applications for well over 150 years. Their popularity comes from their safety, reliability, and cost-effectiveness when compared with other types of rechargeable batteries.   According to Fred Wehmeyer, U.S. Battery Senior VP of Engineering, FLA batteries deliver the lowest cost per watt-hour both in acquisition cost and in overall cost per charge/discharge cycle.  “This is why they are the best choice for fleets of vehicles or equipment that are used heavily on a daily basis,” says Wehmeyer. “Also, both FLA and AGM batteries offer an environmental advantage over other types of batteries because they are essentially 100 percent recyclable and enjoy the highest recycling rate of any commercial product.”

AGM batteries offer the advantage of being maintenance-free. This can be significant in applications where regular maintenance is difficult or costly, such as when the batteries are located in remote or hard to access locations. Even though AGM batteries cost more per watt-hour, the elimination of maintenance costs reduces the overall battery operational costs.  Also, since the battery is sealed and does not emit gases in normal use, it can be used in sensitive areas such as food or pharmaceutical storage facilities.

Selecting between FLA or AGM deep cycle batteries ultimately depends on the type of use and the capability to provide regular maintenance in the application.

AGM = No Maintenance + Higher Cost + Susceptible to abuse like overcharging

FLA = Requires Watering + Lower Cost + Susceptible to abuse from poor maintenance

No matter what type of battery you use, it is always best to target the depth of discharge to 50 percent or less for both FLA or AGM battery types. This will optimize battery life cycle cost vs acquisition cost over the life of the battery system.

 

US AGM12V27

Best Uses For AGM Deep-Cycle Batteries

When it comes to powering electric vehicles like golf carts, cleaning machines, and marine/RV accessories, deep-cycle batteries are the industry standard. The reason is that they are designed to provide greater long-term energy delivery that is capable of powering vehicles and equipment for longer periods of time, compared to a battery used to start a vehicle.

Deep-cycle absorbed glass mat (AGM) batteries were designed with the electrolyte soaked into absorbed glass mats that surround the battery’s cell plates, rather than being submerged in the liquid electrolyte like the Flooded Lead-Acid battery types. The absorbed glass mat design eliminates the need to add water and prevents any leakage of the electrolyte in cold or hot weather conditions.

Without the need to add water, these maintenance-free, batteries offer an advantage when used in compact, battery-powered vehicles and equipment. Many of these have very small battery storage spaces, where access to the batteries is difficult. If you live or use battery-powered equipment in extremely cold environments, AGM batteries are well suited for it, as there’s no free liquid to freeze and expand, which cause battery case damage.

AGM deep-cycle batteries are available in a wide range of sizes and voltages that can be used in just about any application from RVs, to Solar and Renewable energy storage, golf cars, aerial work platforms, floor cleaning machines and more.