Posts

DISTANCE, WORRY-FREE, OR LOW COST

Choosing The Right Battery For Your Situation

When selecting a set of batteries for your golf car, there are a lot of terms to understand, such as amp-hour ratings, capacity at hourly rates, minutes of discharge, and more. It’s a lot to take in and comprehend, and even when you do, it isn’t easily understood how these terms apply to your particular application.

 

Now that deep-cycle batteries are available in three basic chemistries, Lithium-Ion, AGM, and Flooded Lead Acid (FLA), battery selection can be easier by matching the battery type to your real-world needs.  

 

DISTANCE

 

Resorts, retirement centers, and gated communities are growing larger and expanding over vast landscapes. So, having a golf car battery with enough capacity to go longer distances on a single charge is becoming more important in these communities. While all three battery chemistries can do the job, Lithium-ion batteries typically have the advantage of having greater capacity on a single charge at a reduced weight (albeit at a much higher cost per watt-hour). Going farther and longer in your golf car has its advantages. Lithium-ion batteries such as U.S. Battery’s ESSENTIAL Li™ Lithium-ion batteries have longer run times, charge faster, and are safe to use on virtually any make and model of golf car.

 

WORRY-FREE

 

Some golf car owners want to get in their vehicles and go without worrying about weekly or monthly maintenance schedules. Some owners don’t like having to access the batteries or changing them if something goes wrong. AGM batteries offer that kind of worry-free operation and are especially great for those vehicles where accessing the battery compartments is tricky or too tight to reach. Matching the correct voltage and capacity to your golf car’s needs with an AGM chemistry deep-cycle battery will give you lots of worry-free operation.

 

LOW COST

 

There are also frugal golf car owners that want the least expensive battery in their golf car, or at least the most cost-effective battery they can get. These owners don’t want to or do not have the means, to spend lots of money on the latest Lithium or AGM chemistry batteries, which typically cost more initially. Fortunately, Flooded Lead Acid (FLA) batteries are still the most cost-effective type of chemistry per watt-hour. If you’re willing to maintain them on a routine schedule, they can also last a long time before their life expectancy runs out.

 

While this type of battery selection showcases the advantages of each chemistry, keep in mind that any battery type can work in these situations if carefully selected. But looking at battery selection in these three basic applications can, at the least, give you a good starting point in choosing an optimized battery for your particular application. In the end, it’s still important to talk to your golf car specialist or battery dealer, who can also help you decide which battery is right for you.

 

 

Specific Gravity

WEEDING OUT A BAD BATTERY FROM YOUR PACK

Most electric golf cars utilize a battery pack of four or more deep-cycle batteries that can last a long time if you’ve performed the proper maintenance. Periodically, however, the vehicle may not seem to have the range it used to, and replacing all of the batteries may be cost-prohibitive at the moment. In most cases, it’s not the entire battery pack that is going bad, but instead, one battery is not keeping up with the rest of the pack and hurting performance.

Identifying A Bad Battery In Your Pack

1: Fully Charge Your Battery Pack And Take Readings

Perform a full charge to all the batteries and check the specific gravity readings on each battery with a hydrometer and multi-meter. Use the battery manufacturer’s data to see if the readings show the battery pack is undercharged. (Here’s an example of a typical deep-cycle battery data). Repeat the charge cycle to bring the state of charge of the pack up. If, after repeated charges, the batteries begin to increase in specific gravity readings, the problem is not the batteries, and further investigation is required.

2: Perform A Discharge Test At 50% DOD

If the specific gravities indicate charged batteries (1.260 or higher in all cells) and the voltage readings are good on each battery, discharge the battery pack on the vehicle in question. If one cell is significantly lower than the rest of the cells in the pack, mark that battery as suspect. Use a load tester or run the golf car through its typical routine. Battery packs that give less than 50-percent of the rated runtime are usually considered bad.

3: Test And Find The Bad Battery

Measure the voltage at the end of your discharge test to locate the bad battery. The one with a significantly lower voltage than the rest of the pack at the end of discharge is usually the culprit.

4: What If All The Batteries Show Low Voltage?

If all the batteries have a low voltage, and your hydrometer readings on all the batteries do not show a single defective cell, then the entire battery pack may be at the end of its service life.

Replacing Defective Batteries

Once you’ve found a bad battery in your golf car’s battery pack, it is okay to replace the single battery with a new one if it’s under six months old.  If the battery is over six months old, it’s best to replace it with another battery from your fleet that has a date within six months of the rest of the pack or replace the entire pack.

When replacing a single battery or battery pack, it’s important to keep these facts in mind:

1) Cycle life comparisons should be made at the same depth of discharge (DOD).

2) Amp-hour ratings should be compared using the same discharge time and/or discharge current that will be used in the application.

3) Run-time ratings may be the most accurate comparison when selecting a battery for a given application.

battery pack capacity infograph

Battery Pack’s Size Impacts Capacity And Run-Time

Having to buy a new set of batteries for your golf car is not something people always look forward to. A 48-volt golf car can take anywhere from four or even eight batteries, depending on the compartment space and vehicle model. This can be a big investment, so if you could get away with only buying four 12v batteries, would that be better? It might seem so upfront, but depending on how often you use your golf car and the amount of runtime you expect, fewer batteries with the same voltage may not always be the best choice.

Depending on the make and model of your golf car, it may seem less expensive to buy four 12-volt batteries connected in series to power a 48-volt system. Choosing higher voltage deep-cycle batteries, however,  often means sacrificing amp-hour capacity. Under constant use, a four-battery pack will have a shorter life cycle than a pack producing the same 48-volts but made up of more batteries. The reason is that the larger battery pack provides a substantial increase in amp-hour capacity, leading to more runtime and cycle life than a smaller battery pack.

More batteries connected in series can produce the same amount of voltage, but because there are more batteries to share the load, it lowers the discharge rate per battery. The driving range is also extended because more batteries increase the overall capacity. Think of it like adding a larger fuel tank to your car. With a larger battery bank, you can drive your golf car farther between charges. If you keep your depth of discharge (DOD) on the battery pack less than 50 percent, it will ultimately add to making the pack last much longer than a pack with fewer batteries.

For example, on a 48-volt golf car, you can typically get a longer driving range and increased battery life with six 8V batteries, and even more capacity with eight 6V batteries. There are still other variables to consider, as there are various 6V and 8V batteries with different amp-hour ratings, but when you replace the batteries with the same amp-hour rating required by the golf car manufacturer and provide proper maintenance procedures, the battery bank with more batteries will last longer. Additional information on explaining the effects of wiring batteries in series and parallel can be found here: https://www.usbattery.com/info-center/configuration/

White golf club car.

Replacement Batteries For Club Car Golf Carts

Club Car golf carts have been around for nearly 60-years, producing a variety of battery-powered golf cars, utility, and personal use vehicles. As most owners of these vehicles know, proper battery maintenance is key to longevity and reliability, but eventually, the batteries will need to be replaced. 

 

When it comes time to get a new set of deep-cycle batteries for your Club Car, it’s important to make sure you select the right ones for your particular application, and most importantly, the type of use it will see. Club Car’s battery specifications are different for the various model vehicles they produce. Most utilize a 48-volt electric engine but depending on the model, have different amperage and power requirements.

 

As an example, Club Car DS and Precedent models (2in1, 2Plus2, Cargo, Professional), XF (2in1, 2Plus2) and XF Cargo models take six BCI Group Size GC8 eight-volt batteries. Choosing the right one depends on if you use the vehicle daily or if it says in storage at your vacation home. For each of these types of scenarios, there are different battery ratings to choose from that might better match your usage needs. U.S. Battery’s US 8VGC XC2 (with a 20-hour rate of 170) is a great choice for those who want a longer-lasting battery for this application. The US 8VGCE XC2 (with a 20-hour rate of 155) offers less overall runtime for applications where the vehicle won’t be used daily, offering a more cost-effective solution.

 

Club Car Precedent Champion models also use a 48-volt system but utilize four BCI Group Size GC12, 12-volt batteries. U.S. Battery’s 12VRX XC2 (20-hour rate of 155) provides a great compromise between daily and occasional use. 

 

Proper Maintenance Makes The Difference 

 

To get the most performance from your new battery, you must develop a regular maintenance schedule that consists of:

 

1. Checking and replenishing the electrolyte levels. Installing a BWT or Flow-Rite single-point-watering kit can make this an easy and quick process.

2. Performing an equalization charge

3. Checking and Cleaning battery terminals and connections

4. Performing an opportunity charge when possible

 

For a full list of proper Deep Cycle Battery Care & Maintenance procedures please see our page or download our Care & Maintenance brochure.

 

U.S. Battery Deep Cycle batteries are handcrafted in the U.S.A. The batteries also feature our exclusive XC2 formulation that gives them the highest initial capacity, fastest cycle-up time to full-rated capacity, improved recharge-ability, and the highest total energy delivered than any battery in their class. For a complete list of Flooded Lead-Acid or AGM batteries for golf cars and utility vehicles visit U.S. Battery’s Golf and Utility Vehicle Battery page to see all of the models, sizes, and specifications available to fit your particular vehicle.

Connected 8v Batteries

SpeedCaps™ For Your Deep-Cycle Battery

U.S. Battery SpeedCaps™ Go Beyond Venting Deep-Cycle Battery Cells

The vent caps used on deep cycle batteries are designed to allow the escape of gases formed inside the battery when it is being charged and to limit the escape of electrolyte in normal operation. The vent caps are also designed for easy removal to visually check the electrolyte level in the battery and to add water as necessary.   They also allow for the insertion of a hydrometer to check the battery’s state of charge.  During regular maintenance that requires removing and reinstalling the vent caps, there is a possibility that the vent caps may not be properly reinstalled.  This could allow electrolyte to spill over onto the battery and cause corrosion on terminals and surrounding areas.

To improve on the standard battery vent cap, U.S. Battery SpeedCaps™ are designed with a cantilever-style closure that is attached to three or four battery cell caps. This design allows all the caps to be easily removed with a single twist. The design not only makes the removal of the battery caps easier, but it also ensures that they are properly seated when being replaced. The locking ramp on top self-adjusts to maintain compression between the sealing gasket and vent well surface for the life of the battery. SpeedCaps™ are designed to make your job of battery maintenance as hassle-free as possible while also maintaining a proper seal and gas venting during use.CAD drawing of U.S. Battery SpeedCaps

Proper venting is critical during charging when gas is being generated within the electrolyte and bubbles to the surface, helping to mix the electrolyte. To prevent electrolyte from escaping past the vent caps, U.S. Battery SpeedCaps™ feature 0.750-inch diameter porous discs that assure proper venting while maintaining flame retardance to prevent gas ignition inside the battery. They also have four separate vent holes that decrease backpressure and prevent internal pressure buildup.

Since vent caps are removed and replaced frequently during regular battery maintenance, U.S. Battery SpeedCaps™ are designed with a larger diameter flange. The enlarged flange ensures even pressure on the surface of the sealing gasket while maintaining a tight fit between the barrel and cylinder to eliminate side-to-side movement and the chance for misalignment of the gasket onto the sealing surface.

To prevent spilling of the electrolyte during vehicle movement in golf carts, aerial platform lifts, RVs, boats, etc., the SpeedCap™ design also features a double-sided internal baffle with multi-directional channels and a sloped center hole return drain, all designed to route battery electrolyte back into the cell.

With all these safeguards in place, U.S. Battery SpeedCaps™ are an example of one of the many details the company adds to its products to ensure they provide optimum performance and cycle life compared to other deep-cycle batteries on the market.

8V batteries with watering kit

5 Benefits To Using A Single Point Watering System

Anyone using deep-cycle flooded lead-acid batteries in their electric vehicle or other equipment knows the importance of routinely watering the batteries. During charging, the water content of the electrolyte will decrease due to the electrolysis of water into hydrogen and oxygen gases. If left unchecked, the electrodes inside each cell can become exposed, resulting in a loss of battery performance. Regular watering is essential to the continued life and performance of any flooded deep cycle battery.

Electric vehicles and other equipment using deep cycle batteries typically have from four to eight individual batteries – each with multiple cells. Watering each cell can take a significant amount of time, especially if you are maintaining a fleet of vehicles. Battery packs are often located in areas that are not easily accessible, increasing the time required for watering.U.S. Battery offers two single-point watering systems (SPWS), Battery Watering Technologies and Flow-Rite, which can make battery maintenance quick and easy while offering several other benefits.

  1. You Can Fill All Your Batteries At Once
    A SPWS connects to all of the cells in each of the batteries within the pack allowing you to fill them with water from a single point.
  2. Save Time During Regular Maintenance
    On a single battery-powered vehicle, you can water all of the batteries in about a minute, versus what would normally take 45-60 minutes per vehicle.
  3. No Chance Of Over Watering
    With an SPWS, the battery cells fill up to the proper level and shut off to prevent overfilling.
  4. Monitoring Systems Can Tell You When To Water
    Some SPWS offer a sensor that can monitor water levels in the battery and indicate when they need watering.
  5. Extended Battery Life
    Frequent maintenance extends the life of your batteries which in turn lowers your annual operating costs.

Click here for more information and installation instructions for our SPWS

US 12VRX XC2

Deep-Cycle Battery Tune-Up Tips

Aside from routinely adding water and charging your deep-cycle batteries, battery manufacturers recommend giving your batteries a tune-up. Simply put, this consists of a few methods to check the condition of the deep-cycle batteries and the associated components so that everything can continue to run perfectly.

Battery Terminals and Wires

1) Safety first. Always perform battery maintenance in a well ventilated area and wear eye protection and gloves.

2) Open the battery compartment of your deep-cycle battery-powered vehicle and check the wires and terminals connected to the battery. If corroded, clean them with a mixture of baking soda and water to neutralize acid corrosion (easily done with a spray bottle). Remove the cables from the battery terminals and, using a wire brush with a plastic or wooden handle to prevent shorting, clean the terminals and wire connections down to the bright metal. Replace any wires that are frayed or broken.

3) Reconnect the cables to the battery terminals. The recommended terminal torque is 100-inch pounds or 15-18 pounds on the end of a six-inch wrench. Avoid using larger wrenches or power tools.  Lead terminals can easily be damaged by over-tightening.  The goal is to fully compress the split-ring lock washer but no more. Use insulated tools to prevent arching.

4) Once the terminals and cables are clean and connections are secure, use silicone spray or a corrosion inhibitor to prevent additional corrosion from forming.

Condition of the Batteries

1) Remove the vent caps on each of the deep-cycle batteries and check the electrolyte level in each cell. If some are low, refill with distilled water so that the plates are covered with at least ¼ inch of electrolyte before charging.  After charging top up to within a ¼ inch of split-ring level indicator.

2) Use a hydrometer to determine the state of charge for each battery. During winter storage, all of the batteries should have been stored in a fully charged state. Check the battery manufacturer’s recommendation for the fully charged specific gravity for each type of battery.

3) If the batteries are fully charged, the vehicle is ready to start service. If the batteries are not fully charged, connect the charger and let it run through a full charge cycle. After charging recheck the electrolyte level and use a hydrometer to verify the batteries are at full charge.

4) After the first 30-days of use, perform an equalization charge to balance the cells and to mix the electrolyte to  prevent stratification.

Once you’ve completed these steps, your deep-cycle batteries in your golf cart, aerial work platform, forklift or even your RV and boat, should be ready to go back to work. With regular maintenance, they will continue to run at optimum performance and last longer with lower annual operating costs. For more information on deep-cycle batteries for your particular application and maintenance tips, visit www.usbattery.com.

 

 

Screenshot of U.S. Battery Battery Application Guide Mobile App

Getting The Most Out of U.S. Battery’s Mobile App

U.S. Battery introduced its mobile app earlier this year.  This powerful tool allows users to access exclusive U.S. Battery content from their Apple or Android device. Here are a few ways that the app can be useful to you.

Battery Application Guide

When it comes time to replace one or more of your deep cycle batteries, selecting the right one for your application can be confusing. Battery powered vehicles and equipment often operate under different voltages and run-times, which makes selecting the right deep-cycle battery particularly important.

U.S. Battery Manufacturing created its mobile app to help you make the correct battery selection. The included Battery Application Guide makes it easy to find and select the right battery for a variety of applications including golf carts, floor machines, aerial work platforms, and more. By selecting your machine’s manufacturer and model, you can determine the batteries best suited to ensure your machine’s optimal performance.

Access to Product Spec. Sheets

From the app, you are able to easily access the most up-to-date spec. sheets and product information for all of U.S. Battery’s Flooded Lead Acid and AGM batteries.

 User-Specific Notifications

Learn about new products you might be interested in as soon as they are announced. Users can create a login and get notifications on new products, events, articles, and videos that are customized to their particular interests.

The U.S. Battery app is free and is available for download from iTunes and Google Play.

The Electric Golf Car Market Expected To Expand

Market Researchers See Continued Growth On Electric, Battery Powered Golf Cars Through 2026

According to a market analysis by consulting and marketing research firm, Future Market Insights, the golf car market is expected to be positive for the long-term, with electric golf cars having the highest anticipated compound annual growth rate of 6.4 percent through 2026. (Global Industry Analysis and Opportunity Assessment 2016-2026 ).

According to the research, the growth is due to the electric golf car as internal transportation for developing countries, as well as private clubs, golf-centric real estate developments, the travel tourism industry which is expected to include new construction of resorts and golf courses.

Golf Car Options Magazine also published the research, but they suspect that this expected growth of the global golf car market will be challenged with the maintenance of lead-acid batteries, claiming that they are also less efficient and require frequent charging. While battery maintenance is essential for optimum performance in electric golf cars, items such as single point watering systems, Sense Smart Valves and proper charging techniques, can dramatically reduce maintenance and extend battery life. In addition, flooded lead-acid batteries have the benefit of being recycled at a rate of 99 percent, with the recycled lead going back into new golf car batteries in a closed-loop system.

The report goes on to say that electric powered golf cars are expected to continue to dominate the market in terms of value over the forecast period.