Posts

U.S. Battery Makes Donation To Santa’s Posse

Santa’s Posse is a nonprofit organization that partners with the Clark County, Washington Sheriff’s Office, who collects and distributes toys and food for the needy. To help Santa’s Posse deliver to more than 1,000 families this year, U.S. Battery and its Distributor Battery Systems of Portland, Oregon, donated two US 27DC XC2 deep-cycle 12-Volt multi-purpose batteries. The batteries will be auctioned to raise additional money that helps to provide more than 2,900 kids with toys and holiday meals.

U.S. Battery’s Western Regional Sales Manager Dwayne Porter is also a volunteer Sheriff’s Auxiliary member and presented the donation on behalf of Battery Systems of Portland and U.S. Battery, to Sergeant Kevin Allais of the Clark County Sheriff’s Department. Donations to Santa’s Posse can be made via the organization’s Facebook page:https://www.facebook.com/SantasPosse/

Battery Council International Among The Success Stories In Recycling

The U.S. Environmental Protection Agency (EPA) challenged companies and organizations to sign and be a part of the EPA’s America Recycles Pledge, representing their active participation in addressing the challenges of America’s recycling programs. After many companies signed and joined, the EPA recently recognized several organizations that have shown exemplary successes in recycling.

Among those recognized was the Battery Council International (BCI), a not-for-profit trade organization that represents the lead battery industry consisting of battery manufacturers, recyclers, and suppliers. The organization is committed to sustainability, the environment, and society by providing extensive information about recycling lead batteries to consumers and policymakers. 

With lead battery recycling at a 99.3% rate and the fact that lead batteries are safely manufactured and recycled through a “closed-loop” state-of-the-art process, BCI estimates this effort keeps more than 1.7 million tons of lead batteries out of  U.S. landfills. BCI was recognized for its training materials, intended for retailers, that help inform handlers on how to identify and remove lithium batteries from the lead recycling process. BCI created a lithium battery training tool kit designed for companies to incorporate into their onboarding programs and learning management systems.

BCI was one of many companies and organizations recognized by the EPA for their recycling efforts in 2018 and celebrates these successes to remind us of the significant progress made by individuals and companies when working together.

Testing Battery Specific Gravity with Hydrometer

Temperature’s Impact on Charging Deep-Cycle Batteries

The chemistry of flooded lead-acid deep-cycle batteries makes them one of the most cost-effective methods of energy storage. The composition of the battery’s design, however, makes it sensitive to temperature, which can affect its charging and discharging rate, something that should be addressed in regular maintenance routines.

Cold temperatures slow the rate of charging and discharge, while warmer temperatures increase the rates. This means that it may take longer for your batteries to fully charge in the winter than they will in the summer. Additionally, in the warmer summer months, batteries may discharge more quickly. Battery manufacturers use 80-degrees F (27 C) as the baseline temperature for optimum operation and calculating charge and discharge rates. Obviously that doesn’t work for everyone, so it’s important to take specific gravity readings with a hydrometer to know if and when your batteries are properly charged in all temperature conditions.

Specific gravity is the ratio of the weight of a solution to the weight of an equal volume of water at a specified temperature. A hydrometer can give you an indication of the state of charge of the battery’s electrolyte. A higher number indicates a higher concentration of acid in the electrolyte, indicating the battery is charged. A lower number indicates that the concentration of acid in the battery is less, showing the amount of discharge of the battery.

Battery manufacturers recommend using a simple correction factor to your hydrometer’s readings. Using 80-degrees as your baseline, subtract (.004) from your hydrometer reading for every 10-degrees below 80 °F (5.6-degrees below 27 °C). For example, if the temperature of the electrolyte is 50 °F and your battery specific gravity reading is 1.200, you must subtract .012 from your reading. In this case .004 for every 10-degrees equals .012. Subtract this from 1.200 and your corrected specific gravity reading is 1.188.

Specific gravity readings must be done on every cell of each battery in the pack. Compare the readings to the battery manufacturer’s specifications to indicate the state of charge of your batteries. While it’s not necessary to calculate your hydrometer’s readings for slight variations above or below 80 °F, it should be done in extreme weather conditions or seasonally to ensure that your battery-powered vehicles or equipment are performing at their best.

Assemblywoman Cristina Garcia Visits California Battery Plant

Assemblywoman Cristina Garcia Visits California Battery Plant

On September 26, 2019, representatives from U.S. Battery and Battery Council International were pleased to host Assemblywoman Cristina Garcia (D-Bell Gardens) at U.S. Battery’s manufacturing facility in the city of Corona. Assemblywoman Garcia is an author of AB-142, the Lead Battery Recycling Act (2016) which requires the Department of Toxic Substances Control to investigate and clean up properties impacted by closed lead battery recycling facilities. Additionally, the legislation stabilizes the funding for the program by increasing the current fee on battery manufacturers and making it permanent.

The facility tour showcased U.S. Battery’s process for manufacturing deep-cycle batteries, which are used for a variety of consumer and commercial applications, including energy storage to support solar and wind energy generation, and zero emissions backup power systems. These applications will be especially important in California, which leads the nation in the fight against climate change and has established ambitious goals to curb emissions of climate-forcing pollutants. To achieve these goals, the state will need to avail itself of all viable clean energy technologies, including lead batteries.

The U.S. Battery manufacturing facility is part of the lead battery industry’s overall contribution to California’s economy:

  • 3,056 jobs
  • $195.9 million in annual labor income,
  • $332.9 million in annual gross state product (GSP),
  • $998.6 million in annual output (overall economic benefit), and
  • $92.9 million in annual government revenue.

These benefits are widespread and support a variety of industries throughout California. For details on the economic contribution of the lead battery industry, visit: www.essentialenergyeveryday.com

Battery industry's impact on economy

Lead Battery Industry In The U.S. Drives Economic Growth

A study by the Battery Council International reveals that the lead battery industry in the United States provides a large boost to the economy through manufacturing, recycling and mining activity while continuing to be one of the safest and most reliable sources of energy storage.

Highlights from the study include:
  • The lead battery industry employs nearly 25K workers and contributes $26.3 billion to the U.S. economy.
  • The lead battery industry indirectly affects various industries, including suppliers, worker spending, transportation and distribution, and research and development, which contribute a total of 92,000 jobs and $1.7 billion annually in payroll.
  • Lead batteries are used to power nearly 275 million cars and trucks.
  • Many modern vehicles utilize start-stop technology; a system that allows cars to temporarily stop their engines, while idling, to conserve fuel. According to the Consortium for Battery Innovation, this technology, which utilizes lead batteries, is eliminating 4.5 million tons of greenhouse gas emissions annually in the U.S.
  • Lead batteries have a recycling rate exceeding 99 percent, and are the most recycled consumer-produced products in the U.S. According to the BCI, a new lead battery consists of more than 80 percent recycled material, and nearly 70 percent of its lead comes from recycling from a “closed-loop” industry, making it the most environmentally sustainable of all battery technologies.

Investment in research and development also adds to the lead battery industry’s contribution to economic growth in the U.S. According to the BCI, in 2018 the lead battery industry invested over $100 million into this area, continuing to meet the rapidly changing needs within transportation, renewable energy, communications and other sectors, and has already improved the lifespan of batteries and their ability to store energy.

In total, the BCI study demonstrates how the U.S. lead battery industry annually supports $6 billion in labor income, $10.9 billion in the gross domestic product (GDP), $26.3 billion in overall economic impact, and 2.4 billion in government revenue. These impacts, according to the BCI, represent the lead battery’s total contribution to the national economy. To find out more and read the BCI’s economic impact study, visit the website at www.batterycouncil.org

 

Connected 8v Batteries

Deep-Cycle Battery Terminals And Cable Maintenance Tips

When battery-powered vehicles and equipment suffer from intermittent performance issues, one of the most common reasons for this is poor battery cable connections. Ironically, loose connections can be caused by both under-tightening and over-tightening of the battery terminal connectors, as well as corrosion that can occur over time. Deep-cycle battery terminals are made from lead, which is a soft metal that creeps over time. The result is that they must be retightened regularly to maintain proper torque levels. If too much torque is applied when attaching cables to battery terminals, however, it can cause damage to the lead terminals preventing them from making a proper connection.  Battery manufacturers recommend terminal torque specifications that vary with the different types of terminals used for deep-cycle batteries.

Deep cycle batteries can come with UTL, UT, large and small L, Offset S, and SAE tapered post terminals, among others.  For UTL and UT battery terminals with threaded studs, the recommended torque is 95 – 105 in-lb (7.9 – 8.8 ft-lb).  For bolt-thru terminals such as large and small L and Offset S, the recommended torque is 100-120 in-lb (8.3 – 10 ft-lb).  SAE terminals have a recommended terminal torque of 50-70 in-lb (4.2 to 5.8 ft-lb). For other terminal types, consult the battery manufacturer’s recommendations. When measuring terminal torque, use a torque wrench with settings or readings in the 0 – 200 in-lb (0 – 16 ft-lb) range. Larger torque wrenches can inadvertently exceed the recommended settings or readings.

It is also important to consult the battery manufacturer’s recommendations for the proper type and assembly of the terminal hardware. Most manufacturers provide stainless steel nuts and lock washers or plated bolts, nuts, and lock washers with the batteries depending on the type of terminal used. The correct method is to position a lock washer between the nut and the connector (never between the connector and the lead terminal) and apply the recommended torque to completely compress the lock washer without deforming the lead terminal.

Clean terminals will maintain the best connection, so if corrosion is observed on the battery terminals and connectors, they should be cleaned with a wire brush and a solution of baking soda and water to neutralize any electrolyte that may be on the surfaces. To reduce the formation of corrosion on the terminals, battery manufacturers recommend using a corrosion inhibitor after making proper connections. Never apply grease or other lubricants between the terminals and connectors since they can interfere with the connection.

Check the cables to determine if they are corroded and need to be replaced.  Corrosion can extend under the cable insulation but is often not visible. A good ‘tug’ on the cables can expose weak connections. If new cables or connectors were added during the life of the vehicle, make sure the wire connectors are properly crimped and soldered to the cable ends.  Studies have shown that wire cables with crimped connectors that are not soldered to the cable ends can corrode faster and create a high resistance connection between the wire cable and crimped connector. This high resistance can cause excessive heating during discharge and melt the lead terminal, causing a loss of connection and permanent damage to the battery.  If any of the cables show signs of melted insulation, corrosion under the insulation, or have bare wire showing replace the cables and connectors.

While faulty connections are often the cause of battery terminal meltdowns resulting in poor performance, using appropriately sized wires with properly crimped and soldered connectors and the proper torque settings will reduce the chances that poor connections will adversely affect battery performance.

Initial Capacity vs Rated and Peak Capacity for Deep-Cycle Batteries

Deep cycle batteries are designed to provide continuous power over an extended period of time and are then recharged in preparation for the next discharge/recharge cycle.  For many industrial and consumer applications where energy storage is critical, flooded lead-acid batteries provide premium performance at an unrivaled cost.  Consumers, however, may not be aware that flooded lead-acid deep cycle batteries are designed to reach their rated and/or peak capacity after a conditioning period of capacity ‘cycle-up’.  This cycle-up period consists of a series of discharge/recharge cycles in normal operation during which the available battery capacity increases with each cycle.  This conditioning cycle-up period is designed to provide the optimum in cycle life vs. cost for this type of battery and application.  The number of cycles required to achieve rated and/or peak capacity depends on many factors, including but not limited to battery design, recharge method, depth of discharge, temperature, etc.

Most deep cycle battery manufacturers provide a ‘Capacity Development Curve’ that describes the relationship of initial capacity and the number of cycles required to achieve rated and/or peak capacity for this type of battery.  The test procedures used to determine battery capacity ratings and capacity development relationships are specified in Battery Council International procedure BCIS-05 BCI Specifications for Electric Vehicle Batteries (Rev. 2010-15).  Per BCIS-05: “Long-life deep cycle EV batteries typically exhibit 75-80% of rated capacity on initial discharge, full rated capacity within the first 100 cycles, and >100% of rating at peak capacity.”

To achieve optimum cycle life vs. battery acquisition cost, most battery manufacturers recommend sizing the battery’s capacity to ~50% depth of discharge (DOD).  This not only optimizes the cycle life of the battery vs. cost but also provides a ‘reserve’ capacity in situations where additional runtime is needed beyond normal requirements.  Since flooded lead-acid deep cycle batteries can continue to deliver useable capacity down to ~50% of rated capacity, this recommendation also allows utilization of the total number of cycles available from the battery.  For these reasons, the fact that this type of battery does not deliver full rated capacity ‘out-of-box’ is not usually an issue and can easily be managed through proper battery sizing and choice of battery type and manufacturer.

Battery manufacturers do recognize that fleets operating battery-powered machinery such as aerial platform lifts, floor cleaning machines, pallet jacks, and golf carts desire the highest possible capacity over the life of the battery.  Accordingly, they are constantly improving battery designs and charging methods to achieve the highest possible initial capacity and the fastest possible cycle-up without compromising overall cycle life.

 

 

Diagnosing A Bad Deep-Cycle Battery

Finding The Weak Deep-Cycle Battery In Your Pack

There’s a time in the lifespan of a deep-cycle, flooded lead-acid battery where it will begin to fail and not hold a full charge.  Typically there’s no indication when this happens, other than when your battery-powered golf cart, aerial platform, forklift or floor cleaning machine slows down and stops operating. While deep-cycle batteries do often go beyond their advertised lifespan, they will eventually lose performance. A single tired battery in a battery pack can bring down the overall performance, so finding which battery is the culprit is vital to restoring the full potential of your vehicle.

Fully Charge the Battery Pack

Begin your diagnosis by completely charging the battery pack and checking each battery’s specific gravity readings with a hydrometer. Healthy batteries should have similar specific gravity readings in all cells.  If a battery has one or more cells with low specific gravity readings, it may be getting weak and nearing failure.  If all the batteries have low specific gravity readings, try performing an equalization charge.  If the specific gravity readings continue to increase with equalization charging, the problem may be the charger or the charging methods and not the batteries.  Equalization charging should be performed monthly on healthy batteries and more frequently if continuous undercharging is detected.

Perform a Full Discharge

After charging the batteries and the specific gravity readings indicate that all the batteries are fully charged, perform a discharge as the car would normally be used over the course of a day.  If the runtime is significantly shorter than normal, there may still be a weak battery in the pack.  Check the battery voltages and specific gravity readings and confirm that all connections are clean and tight.  If one battery is significantly lower than the rest, mark that battery as a suspect. If no low battery is found, use a load tester to perform a timed load test.  Battery packs that give less than 50% of the rated runtime are usually considered to be no longer serviceable.

Measure Voltage

Using a multimeter, measure the voltage at the end of the discharge test to locate a potentially bad battery. The one with a significantly lower voltage than the rest of the pack at the end of discharge is usually the culprit.  If all the batteries have low voltage and low runtime and your hydrometer readings on all the batteries don’t single out a bad battery or cell, then the entire battery pack may be at the end of its service life.

Replacing One Or More Batteries

If a bad battery is identified, it may not be necessary to replace the entire pack.  Battery manufacturers suggest that it is acceptable to replace one battery in the pack with a new one if it is under six months old.  If the battery is over six months old, it’s usually best to replace it with another battery from your fleet that has a date within six months of the rest of the pack or replace the entire pack.

For more information on deep-cycle batteries, run-time ratings, and maintenance tips to keep golf car batteries running longer, visit www.usbattery.com.

U.S. Battery Manufacturing Continues Support For Physics Factory’s Efforts To Educate Students Using Renewable Energy

Deep-Cycle Battery Tune-Up Tips

Aside from routinely adding water and charging your deep-cycle batteries, battery manufacturers recommend giving your batteries a tune-up. Simply put, this consists of a few methods to check the condition of the deep-cycle batteries and the associated components so that everything can continue to run perfectly.

Battery Terminals and Wires

1) Safety first. Always perform battery maintenance in a well ventilated area and wear eye protection and gloves.

2) Open the battery compartment of your deep-cycle battery-powered vehicle and check the wires and terminals connected to the battery. If corroded, clean them with a mixture of baking soda and water to neutralize acid corrosion (easily done with a spray bottle). Remove the cables from the battery terminals and, using a wire brush with a plastic or wooden handle to prevent shorting, clean the terminals and wire connections down to the bright metal. Replace any wires that are frayed or broken.

3) Reconnect the cables to the battery terminals. The recommended terminal torque is 100-inch pounds or 15-18 pounds on the end of a six-inch wrench. Avoid using larger wrenches or power tools.  Lead terminals can easily be damaged by over-tightening.  The goal is to fully compress the split-ring lock washer but no more. Use insulated tools to prevent arching.

4) Once the terminals and cables are clean and connections are secure, use silicone spray or a corrosion inhibitor to prevent additional corrosion from forming.

Condition of the Batteries

1) Remove the vent caps on each of the deep-cycle batteries and check the electrolyte level in each cell. If some are low, refill with distilled water so that the plates are covered with at least ¼ inch of electrolyte before charging.  After charging top up to within a ¼ inch of split-ring level indicator.

2) Use a hydrometer to determine the state of charge for each battery. During winter storage, all of the batteries should have been stored in a fully charged state. Check the battery manufacturer’s recommendation for the fully charged specific gravity for each type of battery.

3) If the batteries are fully charged, the vehicle is ready to start service. If the batteries are not fully charged, connect the charger and let it run through a full charge cycle. After charging recheck the electrolyte level and use a hydrometer to verify the batteries are at full charge.

4) After the first 30-days of use, perform an equalization charge to balance the cells and to mix the electrolyte to  prevent stratification.

Once you’ve completed these steps, your deep-cycle batteries in your golf cart, aerial work platform, forklift or even your RV and boat, should be ready to go back to work. With regular maintenance, they will continue to run at optimum performance and last longer with lower annual operating costs. For more information on deep-cycle batteries for your particular application and maintenance tips, visit www.usbattery.com.