Posts

The Battery Council International’s Statement On President-Elect Joe Biden’s Build Back Better Recovery Plan

President-elect Joe Biden announced his Build Back Better Recovery Plan which outlines historic investment in Research & Development in markets “where global leadership is up for grabs” including “battery technology … and clean energy.”

“The lead battery industry, with its strong domestic supply chain, is ideally positioned to rapidly deliver on the President-elect’s promise to have American jobs support the nation’s post-Covid economic recovery, and also to ensure America’s global leadership on technological innovation and a green economy infrastructure,” said Roger Miksad, Battery Council International executive vice president and general counsel.

Lead batteries will be the dominant rechargeable battery technology for the foreseeable future, are the most recycled consumer product in the nation, and are the global leader in a variety of green applications from well-known automotive uses supporting clean mobility in low-carbon start-stop and micro-hybrid vehicles, to the growing utility and renewable energy storage markets which are ushering in a global energy transition.

The U.S. lead battery industry invested $100 million in R&D in 2019 and through agreements with the U.S. National Laboratories system is actively pursuing next gen battery technology and energy storage to meet the needs of a market that is expected to grow from 360 GWh in 2020 to 430 GWh in 2030.  These battery innovations are being developed by U.S companies and will be built by U.S. workers in communities across the nation.

Specific Gravity

WEEDING OUT A BAD BATTERY FROM YOUR PACK

Most electric golf cars utilize a battery pack of four or more deep-cycle batteries that can last a long time if you’ve performed the proper maintenance. Periodically, however, the vehicle may not seem to have the range it used to, and replacing all of the batteries may be cost-prohibitive at the moment. In most cases, it’s not the entire battery pack that is going bad, but instead, one battery is not keeping up with the rest of the pack and hurting performance.

Identifying A Bad Battery In Your Pack

1: Fully Charge Your Battery Pack And Take Readings

Perform a full charge to all the batteries and check the specific gravity readings on each battery with a hydrometer and multi-meter. Use the battery manufacturer’s data to see if the readings show the battery pack is undercharged. (Here’s an example of a typical deep-cycle battery data). Repeat the charge cycle to bring the state of charge of the pack up. If, after repeated charges, the batteries begin to increase in specific gravity readings, the problem is not the batteries, and further investigation is required.

2: Perform A Discharge Test At 50% DOD

If the specific gravities indicate charged batteries (1.260 or higher in all cells) and the voltage readings are good on each battery, discharge the battery pack on the vehicle in question. If one cell is significantly lower than the rest of the cells in the pack, mark that battery as suspect. Use a load tester or run the golf car through its typical routine. Battery packs that give less than 50-percent of the rated runtime are usually considered bad.

3: Test And Find The Bad Battery

Measure the voltage at the end of your discharge test to locate the bad battery. The one with a significantly lower voltage than the rest of the pack at the end of discharge is usually the culprit.

4: What If All The Batteries Show Low Voltage?

If all the batteries have a low voltage, and your hydrometer readings on all the batteries do not show a single defective cell, then the entire battery pack may be at the end of its service life.

Replacing Defective Batteries

Once you’ve found a bad battery in your golf car’s battery pack, it is okay to replace the single battery with a new one if it’s under six months old.  If the battery is over six months old, it’s best to replace it with another battery from your fleet that has a date within six months of the rest of the pack or replace the entire pack.

When replacing a single battery or battery pack, it’s important to keep these facts in mind:

1) Cycle life comparisons should be made at the same depth of discharge (DOD).

2) Amp-hour ratings should be compared using the same discharge time and/or discharge current that will be used in the application.

3) Run-time ratings may be the most accurate comparison when selecting a battery for a given application.

R&J Batteries' construction

U.S. Battery’s Australian Distributor R&J Battery Continues To Expand

U.S. Battery distributor R&J Batteries, one of Australia’s largest battery distributors, is expanding its presence in Queensland with the purchase of Tableland Batteries located outside of Atherton, Australia. This gives R&J its sixth branch in Queensland and its 24th branch since the company’s inception. “I believe that there are plenty of opportunities to expand our wings and grow the R&J Batteries brand throughout the Tablelands region,” said Ray Robson, Managing Director of R&J Batteries. “We currently service this area weekly from the R&J Batteries Cairns warehouse. By taking over this business, it will allow us to further explore new opportunities into regions that we have not serviced in the past.”

In addition to the new business acquisition, R&J Batteries is also in the process of constructing a new distribution center as part of its growth strategy in Queensland. The 2,750 sqm distribution center is located in Stapylton, which is opposite the existing R&J Batteries Stapylton branch. The construction of the site is expected to be completed in March 2021. According to Stuart Hamilton, Chief Executive Officer at R&J Batteries, the new distribution center will consolidate several smaller warehouses and accommodate future growth opportunities. “This is a very exciting chapter in the history of R&J Batteries. We have outgrown our current site, so moving into a dedicated, bigger facility will allow us to grow and service the entire Queensland region for many years to come. Investing close to $7,000,000 on this new facility is a major commitment from Ray and is a sure sign of his commitment to the future of R&J Batteries in Queensland as well as throughout Australia and New Zealand,” said Hamilton.

As R&J Batteries continues to expand into the region, the company also prepares for the company’s 25th-anniversary celebrations later this year.

U.S. Department of Energy Urged to Invest in U.S. Lead Battery Industry

In January 2020, the U.S. Department of Energy announced a program for creating and sustaining U.S. global leadership in energy storage utilization and exports, utilizing a secure domestic manufacturing chain independent of foreign resources of critical materials. In response, the Battery Council International (BCI) filed comments urging the U.S. Department of Energy (DOE) to recognize the importance of the lead battery industry to the nation’s energy storage needs and to invest in America’s lead battery industry as part of the DOE’s Energy Storage Grand Challenge.

According to the BCI, the lead battery industry by definition fulfills this goal. It is a domestic industry, which means that the raw materials used to manufacture lead batteries in the U.S. and North America are recycled and produced domestically, including the lead, plastic, and electrolyte. There is no need to import minerals or other materials from unreliable markets to ensure a steady, dependable, and affordable source of energy storage.

The BCI believes that ongoing research into advanced lead battery technologies presents incredible opportunities for the lead battery industry to deliver the energy storage needs of the future. BCI’s comments highlight several of the important advances that have been made by the lead battery industry in recent years and describe several basic science research opportunities that are well-placed for federal investment and grants.

In the coming months, DOE will be releasing opportunities for industry to seek federal grants to pursue additional research into advanced battery technologies. BCI expects to continue engaging with DOE and other stakeholders to ensure that lead batteries are among the technologies chosen to receive federal attention.

BCI’s comments can be accessed here. For more information, contact Roger Miksad at rmiksad@batterycouncil.org.

overlanding house prowerrv

Increase Your RV’s House Power For Overlanding Adventures: Selecting The Right Battery

Most RV’s are equipped with two types of batteries, one for engine starting and another that stores reserve energy to power appliances and the electrical systems in the RV (house power). Most campgrounds with RV parking have electrical hook-ups and when connected there’s no worry about draining your house power battery.  But as more RV owners venture to primitive sites, having the right kind of battery will keep you from running out of power during your stay.

It’s important to understand that there are different types of batteries that can be installed in RV’s for house power use. The most common is a standard 12-volt automotive starter battery. According to Fred Wehmeyer, Sr. VP of Engineering at U.S. Battery Manufacturing automotive starter batteries are not the best type to use for house power when primitive camping.  When you need reserve power to operate lights and appliances in your RV without electrical hook-ups, you need sustained power over a long period of time.  Automotive batteries are designed to provide very high current over a very short time to crank the engine, but are not designed to be discharged deeply and will drain quickly when powering the house load.  Also, the vehicle’s alternator/regulator charging system is not designed to fully charge batteries that are deeply discharged when used for house power.  This type of battery charging requires a dedicated charger that can be connected to AC power and also requires specially designed deep-cycle batteries to withstand the rigors of deep-cycling to provide many hours of reserve energy.

Deep cycle batteries are a much better choice for RV house power.  They are available in both 6 volt and 12-volt sizes that can be connected in multiple series and parallel configurations to provide the amp-hour capacity at 12 or 24 volts, to support the runtime needed in the application,” says Wehmeyer. “Depending on the physical size and the internal design of the battery, battery manufacturers provide ratings on the battery label to indicate the runtime and amp-hour capacity at various discharge rates and times.  This allows the user to match the battery voltage and amp-hour capacity to the desired runtime for the specific requirements of the various loads (lights, appliances, etc.) and to select the best deep cycle battery type and configuration for the application.”

If you look at the types of batteries that owners of electric powered golf carts are using, the vast majority are equipped with 6, 8, or 12-volt deep-cycle lead-acid batteries because they provide reliable and cost-effective power over many years of deep-cycle service. “Switching your RV’s house power from an automotive starter battery to a deep cycle, RV/Marine or golf car-type battery will provide greater amp-hour capacity (reserve power) for Overlanding adventures and longer cycle life particularly when sized properly for a maximum of 50 percent depth of discharge (DOD) based on the battery pack’s total amp-hour capacity,” said Wehmeyer.

When discussing deep cycle batteries, there are essentially two types,  flooded lead-acid (FLA) and valve-regulated lead-acid (VRLA).  There are also two types of VRLA batteries,  absorbed glass mat (AGM) batteries and gelled electrolyte (GEL) batteries.  FLA batteries require regular maintenance such as checking the electrolyte levels and adding distilled water to the battery cells from time to time. This is to ensure the electrolyte completely covers the cell plates at all times, typically 1/4-inch below the bottom of the fill well of the cell cover.

Sealed VRLA batteries have no free electrolyte in them and do not require water addition.  In an AGM battery, the electrolyte is absorbed in a special glass mat separator, and in a GEL battery, the electrolyte is immobilized in a silica gel.  Both types of VRLA batteries require special chargers and/or charge algorithms to provide optimum performance and life.  They are usually heavier, more expensive, and do not last as long as premium FLA deep cycle batteries.

Deep-cycle lithium batteries are becoming more popular in many applications but Wehmeyer says that the chemistry of lithium batteries requires a battery management system (BMS) to safely control how the battery is charged and discharged.  While there are specialized chargers available for lithium batteries, it is not a simple proposition to safely add them to an RV’s electrical system.

As you can see, simply switching from standard automotive starting batteries to deep cycle batteries for your RV’s house power can be very beneficial.  Also, if later you find that you need additional runtime or capacity, you can add more batteries or switch to higher amp-hour capacity batteries.  Another option is to add solar panels and/or an auxiliary generator to be able to charge the batteries when AC power is not available.

 

JLG batteries

Replacement Batteries For JLG Electric Scissor Lifts

Choosing The Right Deep-Cycle Batteries for JLG 24-Volt ES, RS-Series, and JLG 48-Volt LE, E-Series Lifts

JLG is one of the leading manufacturers of scissor lifts and aerial work platforms that are used globally. The company has several lines of battery-powered vehicles that have improved duty-cycles due to their use of deep-cycle batteries.

Many of the company’s ES and RS Series scissor lifts feature a 24-volt system that takes a Group Size GC2 deep-cycle battery. Most of these lifts utilize four 6-volt batteries, so when it comes time to replace them, there are a couple of options that can keep these lifts running at optimum efficiency while also lowering annual operating costs. U.S. Battery’s US 2000XC2 offers 220 amp-hours at a 20-hour rate, offering an excellent value for JLG ES and RS Series lifts to provide excellent life and reliability when maintained.

When work crews need a battery that can keep up with long work cycles and want a longer-lasting battery, U.S. Battery’s US 2200XC2 is perhaps one of the best and hardest working deep-cycle GC2 sized batteries on the market. The US 2200XC2 has 232 amp-hours at a 20-hour rate, giving JLG lifts more runtime and longer life, especially with regular charging and maintenance.

JLG’s larger LE and E Series platform lifts have a 48-volt system and utilize eight Group Size 903 batteries. For these applications, U.S. Battery manufactures the US L16XC2 deep-cycle battery, which provides exceptional value with extended runtime and long life. The US L16XC2 produces 385 amp-hours at a 20-hour rate, making it one of the most popular batteries in this size range for these applications. U.S. Battery’s US L16EXC2 battery is also a Group 903 and is a cost-effective solution for platform lifts, which supplies 360 amp-hours at a 20-hour rate. The US L16HCXC2 is a high-capacity model in the same Group Size 903, that provides 420 amp-hours at a 20-hour rate, offering JLG LE and E Series lifts the maximum runtime available.

Proper Maintenance Makes The Difference 

To get the most performance from your new battery, you must develop a regular maintenance schedule that consists of:

  1. Checking and replenishing the electrolyte levels. Installing a BWT or Flow-Rite single-point-watering kit can make this an easy and quick process.
  2. Performing an equalization charge
  3. Checking and Cleaning battery terminals and connections
  4. Performing an opportunity charge when possible

For a full list of proper Deep Cycle Battery Care & Maintenance procedures, please see our page or download our Care & Maintenance brochure.

U.S. Battery Deep Cycle batteries are handcrafted in the U.S.A. The batteries also feature our exclusive XC2 formulation that produces increased initial capacity, fastest cycle-up time to full-rated capacity, improved recharge-ability, and the highest total energy delivered than any battery in their class. For a complete list of Flooded Lead-Acid or AGM batteries for work platforms visit U.S. Battery’s Aerial Work Platform Battery page to see all of the models, sizes, and specifications available to fit your particular vehicle.

 

TTBLS structure grown with additives

Improving Deep-Cycle Batteries Through Additives

Battery manufacturers have improved deep cycle battery performance through the use of additives, but not all of them result in the same benefit to customers. At the core of all deep-cycle flooded lead-acid (FLA) battery technology is a basic design that has undergone continuous improvement over more than 100 years. Lead battery chemistry is one of the most reliable and cost-effective technologies over any other type of battery used in a variety of global industries. While these batteries have historically been the most widely used and the most recycled, a variety of additives and technologies have been introduced over the last few years to improve their efficiency to an even greater extent.

Grid Alloys

Historically, the primary failure mode of deep-cycle lead-acid batteries has been positive grid corrosion. The grid alloys used to manufacture deep-cycle flooded lead-acid battery plates typically consist of lead with additions of antimony to harden the soft lead, and to improve the deep cycle characteristics of the battery. Additional metals are often added to the lead-antimony alloys to improve strength and electrical conductivity. Another additive that is used to enhance lead-antimony alloys is selenium. Selenium acts as a grain refiner in lead-antimony alloys. This fine-grain alloy provides additional strength and corrosion resistance over conventional lead-antimony alloys. The effect of these improvements is that positive grid corrosion is no longer the primary failure mode, and the cycle life of FLA deep cycle batteries has been significantly increased.

Active Materials

The starting materials for deep cycle FLA positive active materials are made from a mixture of lead oxide, sulfuric acid, and various additives. These materials improve the performance and life of the positive electrodes in a finished battery. Historically, positive electrodes have been processed using a procedure called hydroset. This procedure is designed to ‘grow’ tetrabasic lead sulfate (TTBLS) crystals in the plates to provide the strength to resist the constant expansion and contraction of the active materials during cycling. This crystal growing process has limitations in its ability to control the range of sizes of the TTBLS crystals. Through the use of crystal seeding additives, the range of crystal sizes can be controlled to the most desirable sizes. These uniform crystal sizes in the TTBLS structure result in increased initial capacity, faster cycle-up to rated capacity, higher peak capacity, and improved charging using the wide range of charger technologies used in various applications.

Concurrent with the improvements in deep cycle FLA positive active materials, improvements in the performance of deep-cycle FLA negative active materials are needed. Carbon additives have been used in the negative active materials of lead-acid batteries for many years. These additives have been used in lead-acid battery expanders to prevent the natural tendency of the negative active material to shrink or coalesce during cycling. Negative active material shrinkage can reduce the capacity and life of deep-cycle FLA batteries. Recent improvements in these carbon materials have opened up new opportunities to improve several performance limitations of lead-acid batteries. New structured carbon materials such as graphites, graphenes, and nanocarbons have been used to control sulfation and improve chargeability in a partial state of charge (PSOC) applications such as renewable energy.

Although the basic structure of an FLA battery hasn’t changed for more than 100-years, manufacturers are continually searching for ways to improve efficiency while maintaining their cost-effectiveness. Additives are one of the ways FLA batteries are becoming more efficient, and new technologies to further enhance them are on the horizon.

Group 27 & 31 Batteries and Floor Cleaning Machines

Group 27 & 31 Batteries Designed for Floor Your Cleaning Machines

Maintaining clean facilities has become more critical than ever. To reduce the spread of the COVID-19 outbreak, reliable power for floor cleaning machines is playing an essential role in a Facility Manager’s cleaning regimen.

Many battery-operated floor cleaning. machines utilize BCI group 27 & 31 batteries. Typically, group size 27 and 31 batteries are referred to as “Hybrid.” This is due to the way they are constructed (generally designed for lighter cycling duties such as marine and RV applications). While “hybrid” type batteries are designed to have more deep cycle capability, than Starting batteries, they do not perform as well over time. “Hybrid” type batteries cannot cycle at the same performance levels and are unable to produce as many cycle lives as a true deep cycle battery.

The US Battery team, in consultation with some of our industry partners, came to the conclusion that if we were going to be a player in this market that we needed to have batteries that could provide our customers with a quality product that is also a better value. So, we set out to build a better option. We worked from the ground up and developed our “DC” line of batteries, which includes the US 27DC XC2, and the US 31DC XC2 specifically for use in high-energy consuming cleaning equipment.

When comparing to the “Hybrid” types available on the market, hybrids generally can provide approximately 150-170 cycles when discharged down to 1.75 volts per cell. Our DC line, by comparison, typically supplies about 500 cycles. This is a considerable improvement, and while slightly more expensive than a hybrid, the value to the end-user is substantially improved.

Today our DC line of batteries are used in many floor cleaning machines; because of their reliability and long life. Operators of Nilfisk, Minuteman International, and Power-Flite floor machines often find them powering their equipment. To see all of our cleaning deep cycle batteries please see the Floor Machine application page.

White golf club car.

Replacement Batteries For Club Car Golf Carts

Club Car golf carts have been around for nearly 60-years, producing a variety of battery-powered golf cars, utility, and personal use vehicles. As most owners of these vehicles know, proper battery maintenance is key to longevity and reliability, but eventually, the batteries will need to be replaced. 

 

When it comes time to get a new set of deep-cycle batteries for your Club Car, it’s important to make sure you select the right ones for your particular application, and most importantly, the type of use it will see. Club Car’s battery specifications are different for the various model vehicles they produce. Most utilize a 48-volt electric engine but depending on the model, have different amperage and power requirements.

 

As an example, Club Car DS and Precedent models (2in1, 2Plus2, Cargo, Professional), XF (2in1, 2Plus2) and XF Cargo models take six BCI Group Size GC8 eight-volt batteries. Choosing the right one depends on if you use the vehicle daily or if it says in storage at your vacation home. For each of these types of scenarios, there are different battery ratings to choose from that might better match your usage needs. U.S. Battery’s US 8VGC XC2 (with a 20-hour rate of 170) is a great choice for those who want a longer-lasting battery for this application. The US 8VGCE XC2 (with a 20-hour rate of 155) offers less overall runtime for applications where the vehicle won’t be used daily, offering a more cost-effective solution.

 

Club Car Precedent Champion models also use a 48-volt system but utilize four BCI Group Size GC12, 12-volt batteries. U.S. Battery’s 12VRX XC2 (20-hour rate of 155) provides a great compromise between daily and occasional use. 

 

Proper Maintenance Makes The Difference 

 

To get the most performance from your new battery, you must develop a regular maintenance schedule that consists of:

 

1. Checking and replenishing the electrolyte levels. Installing a BWT or Flow-Rite single-point-watering kit can make this an easy and quick process.

2. Performing an equalization charge

3. Checking and Cleaning battery terminals and connections

4. Performing an opportunity charge when possible

 

For a full list of proper Deep Cycle Battery Care & Maintenance procedures please see our page or download our Care & Maintenance brochure.

 

U.S. Battery Deep Cycle batteries are handcrafted in the U.S.A. The batteries also feature our exclusive XC2 formulation that gives them the highest initial capacity, fastest cycle-up time to full-rated capacity, improved recharge-ability, and the highest total energy delivered than any battery in their class. For a complete list of Flooded Lead-Acid or AGM batteries for golf cars and utility vehicles visit U.S. Battery’s Golf and Utility Vehicle Battery page to see all of the models, sizes, and specifications available to fit your particular vehicle.

National Battery Day 2020

National Battery Day 2020

Celebrating The Benefits Of Lead-Acid Batteries

For industries and individuals who depend on battery power for their machinery and energy needs, lead batteries play an essential part of their work and livelihood. Celebrating National Battery Day 2020 allows these industries, as well as battery manufacturers such as U.S. Battery, to recognize the benefits lead-acid batteries have provided to various industries for more than 150 years.

Cost-Efficient Power

One of the major benefits of flooded lead-acid (FLA) batteries is that they have the lowest cost per watt-hour than any other form of battery type. This is the reason why they are the preferred type of battery in industries that have moved into incorporating more electric vehicles and machinery such as golf carts, aerial and scissor lifts, RVs, floor cleaning machines, marine applications, and well as for renewable energy storage.  With regular maintenance, FLA batteries keep equipment and vehicles running for many years with a low cost of operation, while also remaining as the safest and most reliable sources of energy, according to industry experts and studies performed by the Battery Council International.

Economic Impact

The lead battery industry in the United States also provides a large economic impact by employing nearly 25,000 workers, according to a study by the Battery Council International. This equates to a $26.3 billion in economic impact that also affects suppliers, worker spending, transportation, and distribution that combined, totals 92,000 jobs equating to an estimated 1.7 billion annually in payroll.

Environmental Sustainability

One of the least known advantages of FLA batteries is that they are one of the best examples of a sustainable and cost-effective recycling effort in which nearly 100 percent of these batteries are recycled. All the materials in a lead battery are recycled into new lead batteries, which dramatically reduces their impact on the environment for the battery industry, as well as for industries that have embraced the use of battery-powered vehicles to reduce those that are powered by combustion engines.

In addition, many automobiles utilize start-stop technology, a system that shuts off engines while idle at a stoplight to conserve fuel. This technology, according to the Consortium for Battery Innovation, claims it eliminates 4.5 million tons of gas emissions annually in the U.S. alone.

While new technologies such as Lithium continue to increase in popularity and will foreseeably grow in use, battery manufacturers are finding methods to make them as cost-efficient as FLA batteries, and are also working on ways to effectively recycle them in the same way FLA batteries have been successful industry-wide.