Posts

overlanding house prowerrv

Increase Your RV’s House Power For Overlanding Adventures: Selecting The Right Battery

Most RV’s are equipped with two types of batteries, one for engine starting and another that stores reserve energy to power appliances and the electrical systems in the RV (house power). Most campgrounds with RV parking have electrical hook-ups and when connected there’s no worry about draining your house power battery.  But as more RV owners venture to primitive sites, having the right kind of battery will keep you from running out of power during your stay.

It’s important to understand that there are different types of batteries that can be installed in RV’s for house power use. The most common is a standard 12-volt automotive starter battery. According to Fred Wehmeyer, Sr. VP of Engineering at U.S. Battery Manufacturing automotive starter batteries are not the best type to use for house power when primitive camping.  When you need reserve power to operate lights and appliances in your RV without electrical hook-ups, you need sustained power over a long period of time.  Automotive batteries are designed to provide very high current over a very short time to crank the engine, but are not designed to be discharged deeply and will drain quickly when powering the house load.  Also, the vehicle’s alternator/regulator charging system is not designed to fully charge batteries that are deeply discharged when used for house power.  This type of battery charging requires a dedicated charger that can be connected to AC power and also requires specially designed deep-cycle batteries to withstand the rigors of deep-cycling to provide many hours of reserve energy.

Deep cycle batteries are a much better choice for RV house power.  They are available in both 6 volt and 12-volt sizes that can be connected in multiple series and parallel configurations to provide the amp-hour capacity at 12 or 24 volts, to support the runtime needed in the application,” says Wehmeyer. “Depending on the physical size and the internal design of the battery, battery manufacturers provide ratings on the battery label to indicate the runtime and amp-hour capacity at various discharge rates and times.  This allows the user to match the battery voltage and amp-hour capacity to the desired runtime for the specific requirements of the various loads (lights, appliances, etc.) and to select the best deep cycle battery type and configuration for the application.”

If you look at the types of batteries that owners of electric powered golf carts are using, the vast majority are equipped with 6, 8, or 12-volt deep-cycle lead-acid batteries because they provide reliable and cost-effective power over many years of deep-cycle service. “Switching your RV’s house power from an automotive starter battery to a deep cycle, RV/Marine or golf car-type battery will provide greater amp-hour capacity (reserve power) for Overlanding adventures and longer cycle life particularly when sized properly for a maximum of 50 percent depth of discharge (DOD) based on the battery pack’s total amp-hour capacity,” said Wehmeyer.

When discussing deep cycle batteries, there are essentially two types,  flooded lead-acid (FLA) and valve-regulated lead-acid (VRLA).  There are also two types of VRLA batteries,  absorbed glass mat (AGM) batteries and gelled electrolyte (GEL) batteries.  FLA batteries require regular maintenance such as checking the electrolyte levels and adding distilled water to the battery cells from time to time. This is to ensure the electrolyte completely covers the cell plates at all times, typically 1/4-inch below the bottom of the fill well of the cell cover.

Sealed VRLA batteries have no free electrolyte in them and do not require water addition.  In an AGM battery, the electrolyte is absorbed in a special glass mat separator, and in a GEL battery, the electrolyte is immobilized in a silica gel.  Both types of VRLA batteries require special chargers and/or charge algorithms to provide optimum performance and life.  They are usually heavier, more expensive, and do not last as long as premium FLA deep cycle batteries.

Deep-cycle lithium batteries are becoming more popular in many applications but Wehmeyer says that the chemistry of lithium batteries requires a battery management system (BMS) to safely control how the battery is charged and discharged.  While there are specialized chargers available for lithium batteries, it is not a simple proposition to safely add them to an RV’s electrical system.

As you can see, simply switching from standard automotive starting batteries to deep cycle batteries for your RV’s house power can be very beneficial.  Also, if later you find that you need additional runtime or capacity, you can add more batteries or switch to higher amp-hour capacity batteries.  Another option is to add solar panels and/or an auxiliary generator to be able to charge the batteries when AC power is not available.

 

Nilfisk floor cleaning machine

Replacement Batteries For Nilfisk Floor Cleaning Machines

Choosing the right deep-cycle batteries for Nilfisk Retriever and SRModel Ride-On-Top floor cleaning machines

Nilfisk is one of the leading manufacturers of battery-powered floor cleaning machines that last a long time. Many older models are still in use with maintenance crews that utilize these vehicles on a full-time basis. With proper maintenance, the deep-cycle batteries can last several years but eventually will need to be replaced. Here are some of the best replacement batteries with some options for SR and Retriever sit-on-top models.

The Nilfisk Retriever 4000B and 4600B model cleaning machines, as well as the Nilfisk SR1100B machines, require a 24-Volt battery pack that fits a Group Size 902 deep-cycle battery.  U.S. Battery manufactures a US 305XC2 deep-cycle battery that is a direct replacement that provides 310 amp-hours at a 20-hour rate. If the vehicle will be under severe working conditions requiring longer operating times between charges, U.S. Battery also has a High Capacity battery for these vehicles, a US 305HCXC2, which provides 340 amp-hours at a 20-hour rate.

There are several models of the Nilfisk SR ride-on-top floor cleaning machines that require different size batteries because of the size and shape of the unit. For Nilfisk SR1000B and SR1005B models that require a 24-volt battery pack with a group size 31 battery, U.S. Battery offers it’s US 31DSXC2 deep-cycle battery that provides 130 amp-hours at a 20-hour rate.

Nilfisk SR100ECO models utilize a group size 24 battery and operate with a 12-volt system requiring two 12-volt batteries. U.S. Battery’s US 24DCXC2 is an optimum choice for a replacement with an 85 amp-hour rating at a 20-hour rate. Larger Nilfisk SR1300B models also have a 24-volt system but can operate with longer runtimes with four 6-volt batteries in the 903 group size platform. U.S. Battery’s US L16XC2 deep-cycle batteries are a popular choice, providing 385 amp-hours at a 20-hour rate. Greater capacity can be achieved with U.S. Battery’s US L16HCXC2 high-capacity batteries that are rated at 420 amp-hours at a 20-hour rate.

The Nilfisk SR1300ECO floor cleaning machine utilizes a 24-volt system requiring two 12-volt deep-cycle batteries in a group size 27. U.S. Battery’s US 27DCXC2 makes a great replacement, providing 105 amp-hours at a 20-hour rate.

Proper Maintenance Adds Battery Life

To get the most performance from your new battery, you must develop a regular maintenance schedule that consists of:

  • Checking and replenishing the electrolyte levels. Installing a BWT or Flow-Rite single-point-watering kit can make this an easy and quick process.
  • Performing an equalization charge
  • Checking and Cleaning battery terminals and connections
  • Performing an opportunity charge when possible

For a full list of proper Deep Cycle Battery Care & Maintenance procedures, please see our page or download our Care & Maintenance brochure. U.S. Battery Deep Cycle batteries are handcrafted in the U.S.A. The batteries also feature our exclusive XC2 formulation that produces increased initial capacity, fastest cycle-up time to full-rated capacity, improved recharge-ability, and the highest total energy delivered than any battery in their class. For a complete list of Flooded Lead-Acid or AGM batteries for all types of floor cleaning machines for various make and manufacturers, U.S. Battery’s Floor Machine Battery page to see all of the models, sizes, and specifications available to fit your particular vehicle.

 

battery pack capacity infograph

Battery Pack’s Size Impacts Capacity And Run-Time

Having to buy a new set of batteries for your golf car is not something people always look forward to. A 48-volt golf car can take anywhere from four or even eight batteries, depending on the compartment space and vehicle model. This can be a big investment, so if you could get away with only buying four 12v batteries, would that be better? It might seem so upfront, but depending on how often you use your golf car and the amount of runtime you expect, fewer batteries with the same voltage may not always be the best choice.

Depending on the make and model of your golf car, it may seem less expensive to buy four 12-volt batteries connected in series to power a 48-volt system. Choosing higher voltage deep-cycle batteries, however,  often means sacrificing amp-hour capacity. Under constant use, a four-battery pack will have a shorter life cycle than a pack producing the same 48-volts but made up of more batteries. The reason is that the larger battery pack provides a substantial increase in amp-hour capacity, leading to more runtime and cycle life than a smaller battery pack.

More batteries connected in series can produce the same amount of voltage, but because there are more batteries to share the load, it lowers the discharge rate per battery. The driving range is also extended because more batteries increase the overall capacity. Think of it like adding a larger fuel tank to your car. With a larger battery bank, you can drive your golf car farther between charges. If you keep your depth of discharge (DOD) on the battery pack less than 50 percent, it will ultimately add to making the pack last much longer than a pack with fewer batteries.

For example, on a 48-volt golf car, you can typically get a longer driving range and increased battery life with six 8V batteries, and even more capacity with eight 6V batteries. There are still other variables to consider, as there are various 6V and 8V batteries with different amp-hour ratings, but when you replace the batteries with the same amp-hour rating required by the golf car manufacturer and provide proper maintenance procedures, the battery bank with more batteries will last longer. Additional information on explaining the effects of wiring batteries in series and parallel can be found here: https://www.usbattery.com/info-center/configuration/

TTBLS structure grown with additives

Improving Deep-Cycle Batteries Through Additives

Battery manufacturers have improved deep cycle battery performance through the use of additives, but not all of them result in the same benefit to customers. At the core of all deep-cycle flooded lead-acid (FLA) battery technology is a basic design that has undergone continuous improvement over more than 100 years. Lead battery chemistry is one of the most reliable and cost-effective technologies over any other type of battery used in a variety of global industries. While these batteries have historically been the most widely used and the most recycled, a variety of additives and technologies have been introduced over the last few years to improve their efficiency to an even greater extent.

Grid Alloys

Historically, the primary failure mode of deep-cycle lead-acid batteries has been positive grid corrosion. The grid alloys used to manufacture deep-cycle flooded lead-acid battery plates typically consist of lead with additions of antimony to harden the soft lead, and to improve the deep cycle characteristics of the battery. Additional metals are often added to the lead-antimony alloys to improve strength and electrical conductivity. Another additive that is used to enhance lead-antimony alloys is selenium. Selenium acts as a grain refiner in lead-antimony alloys. This fine-grain alloy provides additional strength and corrosion resistance over conventional lead-antimony alloys. The effect of these improvements is that positive grid corrosion is no longer the primary failure mode, and the cycle life of FLA deep cycle batteries has been significantly increased.

Active Materials

The starting materials for deep cycle FLA positive active materials are made from a mixture of lead oxide, sulfuric acid, and various additives. These materials improve the performance and life of the positive electrodes in a finished battery. Historically, positive electrodes have been processed using a procedure called hydroset. This procedure is designed to ‘grow’ tetrabasic lead sulfate (TTBLS) crystals in the plates to provide the strength to resist the constant expansion and contraction of the active materials during cycling. This crystal growing process has limitations in its ability to control the range of sizes of the TTBLS crystals. Through the use of crystal seeding additives, the range of crystal sizes can be controlled to the most desirable sizes. These uniform crystal sizes in the TTBLS structure result in increased initial capacity, faster cycle-up to rated capacity, higher peak capacity, and improved charging using the wide range of charger technologies used in various applications.

Concurrent with the improvements in deep cycle FLA positive active materials, improvements in the performance of deep-cycle FLA negative active materials are needed. Carbon additives have been used in the negative active materials of lead-acid batteries for many years. These additives have been used in lead-acid battery expanders to prevent the natural tendency of the negative active material to shrink or coalesce during cycling. Negative active material shrinkage can reduce the capacity and life of deep-cycle FLA batteries. Recent improvements in these carbon materials have opened up new opportunities to improve several performance limitations of lead-acid batteries. New structured carbon materials such as graphites, graphenes, and nanocarbons have been used to control sulfation and improve chargeability in a partial state of charge (PSOC) applications such as renewable energy.

Although the basic structure of an FLA battery hasn’t changed for more than 100-years, manufacturers are continually searching for ways to improve efficiency while maintaining their cost-effectiveness. Additives are one of the ways FLA batteries are becoming more efficient, and new technologies to further enhance them are on the horizon.

Group 27 & 31 Batteries and Floor Cleaning Machines

Group 27 & 31 Batteries Designed for Floor Your Cleaning Machines

Maintaining clean facilities has become more critical than ever. To reduce the spread of the COVID-19 outbreak, reliable power for floor cleaning machines is playing an essential role in a Facility Manager’s cleaning regimen.

Many battery-operated floor cleaning. machines utilize BCI group 27 & 31 batteries. Typically, group size 27 and 31 batteries are referred to as “Hybrid.” This is due to the way they are constructed (generally designed for lighter cycling duties such as marine and RV applications). While “hybrid” type batteries are designed to have more deep cycle capability, than Starting batteries, they do not perform as well over time. “Hybrid” type batteries cannot cycle at the same performance levels and are unable to produce as many cycle lives as a true deep cycle battery.

The US Battery team, in consultation with some of our industry partners, came to the conclusion that if we were going to be a player in this market that we needed to have batteries that could provide our customers with a quality product that is also a better value. So, we set out to build a better option. We worked from the ground up and developed our “DC” line of batteries, which includes the US 27DC XC2, and the US 31DC XC2 specifically for use in high-energy consuming cleaning equipment.

When comparing to the “Hybrid” types available on the market, hybrids generally can provide approximately 150-170 cycles when discharged down to 1.75 volts per cell. Our DC line, by comparison, typically supplies about 500 cycles. This is a considerable improvement, and while slightly more expensive than a hybrid, the value to the end-user is substantially improved.

Today our DC line of batteries are used in many floor cleaning machines; because of their reliability and long life. Operators of Nilfisk, Minuteman International, and Power-Flite floor machines often find them powering their equipment. To see all of our cleaning deep cycle batteries please see the Floor Machine application page.

White golf club car.

Replacement Batteries For Club Car Golf Carts

Club Car golf carts have been around for nearly 60-years, producing a variety of battery-powered golf cars, utility, and personal use vehicles. As most owners of these vehicles know, proper battery maintenance is key to longevity and reliability, but eventually, the batteries will need to be replaced. 

 

When it comes time to get a new set of deep-cycle batteries for your Club Car, it’s important to make sure you select the right ones for your particular application, and most importantly, the type of use it will see. Club Car’s battery specifications are different for the various model vehicles they produce. Most utilize a 48-volt electric engine but depending on the model, have different amperage and power requirements.

 

As an example, Club Car DS and Precedent models (2in1, 2Plus2, Cargo, Professional), XF (2in1, 2Plus2) and XF Cargo models take six BCI Group Size GC8 eight-volt batteries. Choosing the right one depends on if you use the vehicle daily or if it says in storage at your vacation home. For each of these types of scenarios, there are different battery ratings to choose from that might better match your usage needs. U.S. Battery’s US 8VGC XC2 (with a 20-hour rate of 170) is a great choice for those who want a longer-lasting battery for this application. The US 8VGCE XC2 (with a 20-hour rate of 155) offers less overall runtime for applications where the vehicle won’t be used daily, offering a more cost-effective solution.

 

Club Car Precedent Champion models also use a 48-volt system but utilize four BCI Group Size GC12, 12-volt batteries. U.S. Battery’s 12VRX XC2 (20-hour rate of 155) provides a great compromise between daily and occasional use. 

 

Proper Maintenance Makes The Difference 

 

To get the most performance from your new battery, you must develop a regular maintenance schedule that consists of:

 

1. Checking and replenishing the electrolyte levels. Installing a BWT or Flow-Rite single-point-watering kit can make this an easy and quick process.

2. Performing an equalization charge

3. Checking and Cleaning battery terminals and connections

4. Performing an opportunity charge when possible

 

For a full list of proper Deep Cycle Battery Care & Maintenance procedures please see our page or download our Care & Maintenance brochure.

 

U.S. Battery Deep Cycle batteries are handcrafted in the U.S.A. The batteries also feature our exclusive XC2 formulation that gives them the highest initial capacity, fastest cycle-up time to full-rated capacity, improved recharge-ability, and the highest total energy delivered than any battery in their class. For a complete list of Flooded Lead-Acid or AGM batteries for golf cars and utility vehicles visit U.S. Battery’s Golf and Utility Vehicle Battery page to see all of the models, sizes, and specifications available to fit your particular vehicle.

8V batteries with watering kit

5 Benefits To Using A Single Point Watering System

Anyone using deep-cycle flooded lead-acid batteries in their electric vehicle or other equipment knows the importance of routinely watering the batteries. During charging, the water content of the electrolyte will decrease due to the electrolysis of water into hydrogen and oxygen gases. If left unchecked, the electrodes inside each cell can become exposed, resulting in a loss of battery performance. Regular watering is essential to the continued life and performance of any flooded deep cycle battery.

Electric vehicles and other equipment using deep cycle batteries typically have from four to eight individual batteries – each with multiple cells. Watering each cell can take a significant amount of time, especially if you are maintaining a fleet of vehicles. Battery packs are often located in areas that are not easily accessible, increasing the time required for watering.U.S. Battery offers two single-point watering systems (SPWS), Battery Watering Technologies and Flow-Rite, which can make battery maintenance quick and easy while offering several other benefits.

  1. You Can Fill All Your Batteries At Once
    A SPWS connects to all of the cells in each of the batteries within the pack allowing you to fill them with water from a single point.
  2. Save Time During Regular Maintenance
    On a single battery-powered vehicle, you can water all of the batteries in about a minute, versus what would normally take 45-60 minutes per vehicle.
  3. No Chance Of Over Watering
    With an SPWS, the battery cells fill up to the proper level and shut off to prevent overfilling.
  4. Monitoring Systems Can Tell You When To Water
    Some SPWS offer a sensor that can monitor water levels in the battery and indicate when they need watering.
  5. Extended Battery Life
    Frequent maintenance extends the life of your batteries which in turn lowers your annual operating costs.

Click here for more information and installation instructions for our SPWS

Santa's Posse 2019

U.S. Battery Makes Donation To Santa’s Posse

Santa’s Posse is a nonprofit organization that partners with the Clark County, Washington Sheriff’s Office, who collects and distributes toys and food for the needy. To help Santa’s Posse deliver to more than 1,000 families this year, U.S. Battery and its Distributor Battery Systems of Portland, Oregon, donated two US 27DC XC2 deep-cycle 12-Volt multi-purpose batteries. The batteries will be auctioned to raise additional money that helps to provide more than 2,900 kids with toys and holiday meals.

U.S. Battery’s Western Regional Sales Manager Dwayne Porter is also a volunteer Sheriff’s Auxiliary member and presented the donation on behalf of Battery Systems of Portland and U.S. Battery, to Sergeant Kevin Allais of the Clark County Sheriff’s Department. Donations to Santa’s Posse can be made via the organization’s Facebook page:https://www.facebook.com/SantasPosse/

Connected 8v Batteries

Deep-Cycle Battery Terminals And Cable Maintenance Tips

When battery-powered vehicles and equipment suffer from intermittent performance issues, one of the most common reasons for this is poor battery cable connections. Ironically, loose connections can be caused by both under-tightening and over-tightening of the battery terminal connectors, as well as corrosion that can occur over time. Deep-cycle battery terminals are made from lead, which is a soft metal that creeps over time. The result is that they must be retightened regularly to maintain proper torque levels. If too much torque is applied when attaching cables to battery terminals, however, it can cause damage to the lead terminals preventing them from making a proper connection.  Battery manufacturers recommend terminal torque specifications that vary with the different types of terminals used for deep-cycle batteries.

Deep cycle batteries can come with UTL, UT, large and small L, Offset S, and SAE tapered post terminals, among others.  For UTL and UT battery terminals with threaded studs, the recommended torque is 95 – 105 in-lb (7.9 – 8.8 ft-lb).  For bolt-thru terminals such as large and small L and Offset S, the recommended torque is 100-120 in-lb (8.3 – 10 ft-lb).  SAE terminals have a recommended terminal torque of 50-70 in-lb (4.2 to 5.8 ft-lb). For other terminal types, consult the battery manufacturer’s recommendations. When measuring terminal torque, use a torque wrench with settings or readings in the 0 – 200 in-lb (0 – 16 ft-lb) range. Larger torque wrenches can inadvertently exceed the recommended settings or readings.

It is also important to consult the battery manufacturer’s recommendations for the proper type and assembly of the terminal hardware. Most manufacturers provide stainless steel nuts and lock washers or plated bolts, nuts, and lock washers with the batteries depending on the type of terminal used. The correct method is to position a lock washer between the nut and the connector (never between the connector and the lead terminal) and apply the recommended torque to completely compress the lock washer without deforming the lead terminal.

Clean terminals will maintain the best connection, so if corrosion is observed on the battery terminals and connectors, they should be cleaned with a wire brush and a solution of baking soda and water to neutralize any electrolyte that may be on the surfaces. To reduce the formation of corrosion on the terminals, battery manufacturers recommend using a corrosion inhibitor after making proper connections. Never apply grease or other lubricants between the terminals and connectors since they can interfere with the connection.

Check the cables to determine if they are corroded and need to be replaced.  Corrosion can extend under the cable insulation but is often not visible. A good ‘tug’ on the cables can expose weak connections. If new cables or connectors were added during the life of the vehicle, make sure the wire connectors are properly crimped and soldered to the cable ends.  Studies have shown that wire cables with crimped connectors that are not soldered to the cable ends can corrode faster and create a high resistance connection between the wire cable and crimped connector. This high resistance can cause excessive heating during discharge and melt the lead terminal, causing a loss of connection and permanent damage to the battery.  If any of the cables show signs of melted insulation, corrosion under the insulation, or have bare wire showing replace the cables and connectors.

While faulty connections are often the cause of battery terminal meltdowns resulting in poor performance, using appropriately sized wires with properly crimped and soldered connectors and the proper torque settings will reduce the chances that poor connections will adversely affect battery performance.

OC Monster Carts US Battery Testimonial

OC Monster Carts Prefers U.S. Battery Products For Its Custom Golf Cars

Chan Hunt, the owner of OC Monster Carts in Southern California, is a custom golf car shop that has tried numerous golf car batteries over the years, but ultimately switched to using U.S. Battery products exclusively. “We meet out customer’s needs and always exceed them when it comes to personalization and registered street-legal vehicles,” says Hunt. “We’ve had some warranty issues with other battery companies that became significant. When we chose U.S. Battery, they exceeded our expectations and are more reliable and user-friendly.”

Hunt realizes that not all golf car customers take care of their golf-car batteries as well as they should, but after seeing OE golf cars come in equipped with U.S. Battery products, Chan says that it helped convince him that it was the right choice for his customers. “One of the greatest things for us and our customers is to have the peace of mind that we can present them a product that they can drive off and us not have to worry about it.”