Testing Battery Specific Gravity with Hydrometer

Temperature’s Impact on Charging Deep-Cycle Batteries

The chemistry of flooded lead-acid deep-cycle batteries makes them one of the most cost-effective methods of energy storage. The composition of the battery’s design, however, makes it sensitive to temperature, which can affect its charging and discharging rate, something that should be addressed in regular maintenance routines.

Cold temperatures slow the rate of charging and discharge, while warmer temperatures increase the rates. This means that it may take longer for your batteries to fully charge in the winter than they will in the summer. Additionally, in the warmer summer months, batteries may discharge more quickly. Battery manufacturers use 80-degrees F (27 C) as the baseline temperature for optimum operation and calculating charge and discharge rates. Obviously that doesn’t work for everyone, so it’s important to take specific gravity readings with a hydrometer to know if and when your batteries are properly charged in all temperature conditions.

Specific gravity is the ratio of the weight of a solution to the weight of an equal volume of water at a specified temperature. A hydrometer can give you an indication of the state of charge of the battery’s electrolyte. A higher number indicates a higher concentration of acid in the electrolyte, indicating the battery is charged. A lower number indicates that the concentration of acid in the battery is less, showing the amount of discharge of the battery.

Battery manufacturers recommend using a simple correction factor to your hydrometer’s readings. Using 80-degrees as your baseline, subtract (.004) from your hydrometer reading for every 10-degrees below 80 °F (5.6-degrees below 27 °C). For example, if the temperature of the electrolyte is 50 °F and your battery specific gravity reading is 1.200, you must subtract .012 from your reading. In this case .004 for every 10-degrees equals .012. Subtract this from 1.200 and your corrected specific gravity reading is 1.188.

Specific gravity readings must be done on every cell of each battery in the pack. Compare the readings to the battery manufacturer’s specifications to indicate the state of charge of your batteries. While it’s not necessary to calculate your hydrometer’s readings for slight variations above or below 80 °F, it should be done in extreme weather conditions or seasonally to ensure that your battery-powered vehicles or equipment are performing at their best.

Assemblywoman Cristina Garcia Visits California Battery Plant

Assemblywoman Cristina Garcia Visits California Battery Plant

On September 26, 2019, representatives from U.S. Battery and Battery Council International were pleased to host Assemblywoman Cristina Garcia (D-Bell Gardens) at U.S. Battery’s manufacturing facility in the city of Corona. Assemblywoman Garcia is an author of AB-142, the Lead Battery Recycling Act (2016) which requires the Department of Toxic Substances Control to investigate and clean up properties impacted by closed lead battery recycling facilities. Additionally, the legislation stabilizes the funding for the program by increasing the current fee on battery manufacturers and making it permanent.

The facility tour showcased U.S. Battery’s process for manufacturing deep-cycle batteries, which are used for a variety of consumer and commercial applications, including energy storage to support solar and wind energy generation, and zero emissions backup power systems. These applications will be especially important in California, which leads the nation in the fight against climate change and has established ambitious goals to curb emissions of climate-forcing pollutants. To achieve these goals, the state will need to avail itself of all viable clean energy technologies, including lead batteries.

The U.S. Battery manufacturing facility is part of the lead battery industry’s overall contribution to California’s economy:

  • 3,056 jobs
  • $195.9 million in annual labor income,
  • $332.9 million in annual gross state product (GSP),
  • $998.6 million in annual output (overall economic benefit), and
  • $92.9 million in annual government revenue.

These benefits are widespread and support a variety of industries throughout California. For details on the economic contribution of the lead battery industry, visit: www.essentialenergyeveryday.com

Battery industry's impact on economy

Lead Battery Industry In The U.S. Drives Economic Growth

A study by the Battery Council International reveals that the lead battery industry in the United States provides a large boost to the economy through manufacturing, recycling and mining activity while continuing to be one of the safest and most reliable sources of energy storage.

Highlights from the study include:
  • The lead battery industry employs nearly 25K workers and contributes $26.3 billion to the U.S. economy.
  • The lead battery industry indirectly affects various industries, including suppliers, worker spending, transportation and distribution, and research and development, which contribute a total of 92,000 jobs and $1.7 billion annually in payroll.
  • Lead batteries are used to power nearly 275 million cars and trucks.
  • Many modern vehicles utilize start-stop technology; a system that allows cars to temporarily stop their engines, while idling, to conserve fuel. According to the Consortium for Battery Innovation, this technology, which utilizes lead batteries, is eliminating 4.5 million tons of greenhouse gas emissions annually in the U.S.
  • Lead batteries have a recycling rate exceeding 99 percent, and are the most recycled consumer-produced products in the U.S. According to the BCI, a new lead battery consists of more than 80 percent recycled material, and nearly 70 percent of its lead comes from recycling from a “closed-loop” industry, making it the most environmentally sustainable of all battery technologies.

Investment in research and development also adds to the lead battery industry’s contribution to economic growth in the U.S. According to the BCI, in 2018 the lead battery industry invested over $100 million into this area, continuing to meet the rapidly changing needs within transportation, renewable energy, communications and other sectors, and has already improved the lifespan of batteries and their ability to store energy.

In total, the BCI study demonstrates how the U.S. lead battery industry annually supports $6 billion in labor income, $10.9 billion in the gross domestic product (GDP), $26.3 billion in overall economic impact, and 2.4 billion in government revenue. These impacts, according to the BCI, represent the lead battery’s total contribution to the national economy. To find out more and read the BCI’s economic impact study, visit the website at www.batterycouncil.org

 

Connected 8v Batteries

Deep-Cycle Battery Terminals And Cable Maintenance Tips

When battery-powered vehicles and equipment suffer from intermittent performance issues, one of the most common reasons for this is poor battery cable connections. Ironically, loose connections can be caused by both under-tightening and over-tightening of the battery terminal connectors, as well as corrosion that can occur over time. Deep-cycle battery terminals are made from lead, which is a soft metal that creeps over time. The result is that they must be retightened regularly to maintain proper torque levels. If too much torque is applied when attaching cables to battery terminals, however, it can cause damage to the lead terminals preventing them from making a proper connection.  Battery manufacturers recommend terminal torque specifications that vary with the different types of terminals used for deep-cycle batteries.

Deep cycle batteries can come with UTL, UT, large and small L, Offset S, and SAE tapered post terminals, among others.  For UTL and UT battery terminals with threaded studs, the recommended torque is 95 – 105 in-lb (7.9 – 8.8 ft-lb).  For bolt-thru terminals such as large and small L and Offset S, the recommended torque is 100-120 in-lb (8.3 – 10 ft-lb).  SAE terminals have a recommended terminal torque of 50-70 in-lb (4.2 to 5.8 ft-lb). For other terminal types, consult the battery manufacturer’s recommendations. When measuring terminal torque, use a torque wrench with settings or readings in the 0 – 200 in-lb (0 – 16 ft-lb) range. Larger torque wrenches can inadvertently exceed the recommended settings or readings.

It is also important to consult the battery manufacturer’s recommendations for the proper type and assembly of the terminal hardware. Most manufacturers provide stainless steel nuts and lock washers or plated bolts, nuts, and lock washers with the batteries depending on the type of terminal used. The correct method is to position a lock washer between the nut and the connector (never between the connector and the lead terminal) and apply the recommended torque to completely compress the lock washer without deforming the lead terminal.

Clean terminals will maintain the best connection, so if corrosion is observed on the battery terminals and connectors, they should be cleaned with a wire brush and a solution of baking soda and water to neutralize any electrolyte that may be on the surfaces. To reduce the formation of corrosion on the terminals, battery manufacturers recommend using a corrosion inhibitor after making proper connections. Never apply grease or other lubricants between the terminals and connectors since they can interfere with the connection.

Check the cables to determine if they are corroded and need to be replaced.  Corrosion can extend under the cable insulation but is often not visible. A good ‘tug’ on the cables can expose weak connections. If new cables or connectors were added during the life of the vehicle, make sure the wire connectors are properly crimped and soldered to the cable ends.  Studies have shown that wire cables with crimped connectors that are not soldered to the cable ends can corrode faster and create a high resistance connection between the wire cable and crimped connector. This high resistance can cause excessive heating during discharge and melt the lead terminal, causing a loss of connection and permanent damage to the battery.  If any of the cables show signs of melted insulation, corrosion under the insulation, or have bare wire showing replace the cables and connectors.

While faulty connections are often the cause of battery terminal meltdowns resulting in poor performance, using appropriately sized wires with properly crimped and soldered connectors and the proper torque settings will reduce the chances that poor connections will adversely affect battery performance.

Initial Capacity vs Rated and Peak Capacity for Deep-Cycle Batteries

Deep cycle batteries are designed to provide continuous power over an extended period of time and are then recharged in preparation for the next discharge/recharge cycle.  For many industrial and consumer applications where energy storage is critical, flooded lead-acid batteries provide premium performance at an unrivaled cost.  Consumers, however, may not be aware that flooded lead-acid deep cycle batteries are designed to reach their rated and/or peak capacity after a conditioning period of capacity ‘cycle-up’.  This cycle-up period consists of a series of discharge/recharge cycles in normal operation during which the available battery capacity increases with each cycle.  This conditioning cycle-up period is designed to provide the optimum in cycle life vs. cost for this type of battery and application.  The number of cycles required to achieve rated and/or peak capacity depends on many factors, including but not limited to battery design, recharge method, depth of discharge, temperature, etc.

Most deep cycle battery manufacturers provide a ‘Capacity Development Curve’ that describes the relationship of initial capacity and the number of cycles required to achieve rated and/or peak capacity for this type of battery.  The test procedures used to determine battery capacity ratings and capacity development relationships are specified in Battery Council International procedure BCIS-05 BCI Specifications for Electric Vehicle Batteries (Rev. 2010-15).  Per BCIS-05: “Long-life deep cycle EV batteries typically exhibit 75-80% of rated capacity on initial discharge, full rated capacity within the first 100 cycles, and >100% of rating at peak capacity.”

To achieve optimum cycle life vs. battery acquisition cost, most battery manufacturers recommend sizing the battery’s capacity to ~50% depth of discharge (DOD).  This not only optimizes the cycle life of the battery vs. cost but also provides a ‘reserve’ capacity in situations where additional runtime is needed beyond normal requirements.  Since flooded lead-acid deep cycle batteries can continue to deliver useable capacity down to ~50% of rated capacity, this recommendation also allows utilization of the total number of cycles available from the battery.  For these reasons, the fact that this type of battery does not deliver full rated capacity ‘out-of-box’ is not usually an issue and can easily be managed through proper battery sizing and choice of battery type and manufacturer.

Battery manufacturers do recognize that fleets operating battery-powered machinery such as aerial platform lifts, floor cleaning machines, pallet jacks, and golf carts desire the highest possible capacity over the life of the battery.  Accordingly, they are constantly improving battery designs and charging methods to achieve the highest possible initial capacity and the fastest possible cycle-up without compromising overall cycle life.

 

 

Battery Industry Associations Commit to Increase Global Recycling Efforts

While North America and Europe have a lead recycling rate of more than 99 percent, industry trade associations met among concerns that these rates were not the same in other parts of the world. In order to improve lead recycling efforts globally, the International Lead Association (ILA), Association of European Automotive and Industry Battery Manufacturers (Eurobat), Battery Council International (BCI), and the Association of Battery Recyclers (ABR), created a Memorandum of Cooperation outlining a framework for the development of a material stewardship program designed to support the environmentally responsible management of lead and other compounds, throughout the lifecycle of a lead-acid battery, from raw material production through battery manufacturing and recycling.

The memorandum issued by all four industry trade associations demonstrates an understanding that lead batteries used for energy storage, industrial applications, and in vehicles is worldwide, but improper recycling practices can cause health risks to the public and environment in areas where recycling rates are not as high as those in North America and Europe. In an effort to respond to these issues, these trade associations agreed collectively to address them by adopting a common set of principals, establishing continuous improvement goals, participate in knowledge transfer concerning environmentally responsible management of lead batteries, and to provide progress reports to interested shareholders.

The effort, according to the ILA, will help to advance environmentally responsible production and recycling of lead and lead batteries, in which the industry sees a global demand for this type of energy storage to increase thirteen-fold by 2024. More information on the agreement by the four trade associations and quotes can be found on the ILA website.

US L16HC XC2 Deep Cycle Battery

A Solar Energy Battery Storage Bank Made To Last 16 Years

Low Amperage Draw And Impeccable Maintenance Kept A Battery Energy Storage Bank Operable For More Than A Decade

Grover, Wyoming resident Jody Jenson, isn’t living “off-grid,” but his home is in a rural part of the state, where water comes from a well and delivered to the home by electric pumps. After several power outages, he didn’t want to rely on the city’s power grid to have fresh water, so he built a 48-volt solar system with U.S. Battery Deep-Cycle batteries for energy storage that have provided 16-years or reliable service.  “I did not like the vulnerability of relying on the grid for our drinking water,” said Jenson. “I spent over $12,000 on this system, including digging a new 100-ft. well. It definitely wasn’t to reduce costs, but more about having freshwater availability.”

To supply power to the pump system Jenson utilizes four 120-watt solar panels mounted together and wired to provide 24-volts and is connected to a circuit breaker and charge controller.  To store energy, he uses eight US L16HC XC2 batteries. “The system powers the well-pump that draws 4-amps, depending on groundwater level, but it’s pretty consistent,” he says. “It takes about 18-hours to fill the 1200 gallon cistern. The system normally runs about 12-hours between low and full tank levels.  From the cistern, there’s another pressure pump that draws six amps for approximately three minutes after starting, providing roughly 30-gallons between cycles.”

 Even though the system doesn’t draw huge amounts of amperage, Jenson never expected that the US L16HC deep-cycle batteries would last 16-years. “When I bought them, I remember being told that with proper maintenance, they should last something like five years,” said Jensen. “I knew with care, they would last longer.”

Jenson has taken exceptionally good care of his deep-cycle batteries, demonstrating how cost-effective flooded lead-acid batteries can be with proper maintenance. His routine includes weekly and monthly procedures. “Every week I go to check the system, including the water level in the cistern, corrosion on the battery posts, charging rate,  and battery voltage,” he says. “The batteries are still showing 26.5-volts fully charged. Once a month, I also check battery water levels and the amperage draw of the two pumps. This gives me any clues as to any problems that might be occurring. Quarterly, I add distilled water to the 24 individual cells.” 

While most people would consider this an impeccable maintenance routine, Jenson also includes periodic equalizing charges. “After adding water, I equalize the bank of batteries with the charge controller for a period of two hours at a maximum of 16-amps,” says Jensen. “I have never equalized without the batteries being fully charged. I’ve totaled up all the water I have added over the years, and as of today, from February of 2003 to now, I’ve added 63-gallons of water to the 24-cells!”

In addition to Jensen’s unique system and maintenance procedures, U.S. Battery L16 HC deep-cycle batteries feature the company’s XC2 formulation that uses Diamond Plate technology, highly efficient synthetic tetrabasic lead sulfate (TTBLS) crystal structures that enhanced performance, charging, and extend battery life. U.S. Battery also manufactures a line of Renewable Energy Batteries that are specifically designed for energy storage and feature Defender Moss Shields that reduce mossing and sulfation conditions, and Outside Positive Plates that mitigate the effects of plate sulfation.

While receiving 16-years of service from a set of deep-cycle batteries is not common, Jenson’s theory of having a large battery bank with a relatively low amperage draw, does demonstrate what low depth-of discharge and proper maintenance procedures can do to extend the life of deep-cycle batteries used for energy storage.

Diagnosing A Bad Deep-Cycle Battery

Finding The Weak Deep-Cycle Battery In Your Pack

There’s a time in the lifespan of a deep-cycle, flooded lead-acid battery where it will begin to fail and not hold a full charge.  Typically there’s no indication when this happens, other than when your battery-powered golf cart, aerial platform, forklift or floor cleaning machine slows down and stops operating. While deep-cycle batteries do often go beyond their advertised lifespan, they will eventually lose performance. A single tired battery in a battery pack can bring down the overall performance, so finding which battery is the culprit is vital to restoring the full potential of your vehicle.

Fully Charge the Battery Pack

Begin your diagnosis by completely charging the battery pack and checking each battery’s specific gravity readings with a hydrometer. Healthy batteries should have similar specific gravity readings in all cells.  If a battery has one or more cells with low specific gravity readings, it may be getting weak and nearing failure.  If all the batteries have low specific gravity readings, try performing an equalization charge.  If the specific gravity readings continue to increase with equalization charging, the problem may be the charger or the charging methods and not the batteries.  Equalization charging should be performed monthly on healthy batteries and more frequently if continuous undercharging is detected.

Perform a Full Discharge

After charging the batteries and the specific gravity readings indicate that all the batteries are fully charged, perform a discharge as the car would normally be used over the course of a day.  If the runtime is significantly shorter than normal, there may still be a weak battery in the pack.  Check the battery voltages and specific gravity readings and confirm that all connections are clean and tight.  If one battery is significantly lower than the rest, mark that battery as a suspect. If no low battery is found, use a load tester to perform a timed load test.  Battery packs that give less than 50% of the rated runtime are usually considered to be no longer serviceable.

Measure Voltage

Using a multimeter, measure the voltage at the end of the discharge test to locate a potentially bad battery. The one with a significantly lower voltage than the rest of the pack at the end of discharge is usually the culprit.  If all the batteries have low voltage and low runtime and your hydrometer readings on all the batteries don’t single out a bad battery or cell, then the entire battery pack may be at the end of its service life.

Replacing One Or More Batteries

If a bad battery is identified, it may not be necessary to replace the entire pack.  Battery manufacturers suggest that it is acceptable to replace one battery in the pack with a new one if it is under six months old.  If the battery is over six months old, it’s usually best to replace it with another battery from your fleet that has a date within six months of the rest of the pack or replace the entire pack.

For more information on deep-cycle batteries, run-time ratings, and maintenance tips to keep golf car batteries running longer, visit www.usbattery.com.

U.S. Dept. Of Energy Supports Study For Lead Battery EV Charging Stations In Missouri

Funding provided through a grant from the U.S. Department of Energy State Energy Program is supporting plans and research investigating advanced lead battery energy storage alongside EV charging points in gas stations in the state of Missouri.

According to the Battery Council International, the Consortium for Battery Innovation (CBI) is in charge of the feasibility study and is preparing to try the lead-acid battery charging stations in at least two locations. “This project aims to demonstrate how advanced lead battery energy storage, linked to EV charging stations, can help manage electricity demand fluctuations and store electricity when it is less costly, before supplying it at a time when electric car drivers need to charge their vehicles,” says CBI Director Dr. Alistair Davidson. “It highlights the important role lead batteries can play in assisting governments around the world to roll-out charging infrastructure and meet energy needs.”

The CBI reports that detailed plans will identify potential funding sources to fully develop each site, which can then be used as a model for future lead battery-supported EV charging stations across the state. CBI aims to establish demonstration sites in the fall of 2019.

Replacement Deep-Cycle Batteries For Vertical Lifts 

Battery-powered vertical lifts are becoming increasingly popular with construction crews, as they are more compact, easily maneuverable, and provide a higher degree of safety than traditional ladders and scaffolding. 

To ensure reliable operation, it’s important for crews and rental facilities to utilize the proper deep-cycle batteries that power them. Some companies like Skyjack, JLG, Snorkel, and others, come equipped with four of our 6V flooded lead-acid batteries that feature quick fill caps that allow for easy inspection and water replenishing.  Over several years of operation, vertical lift manufacturers recommend utilizing the same type of replacement batteries to ensure proper operation. 

Deep Cycle BatteryModels such as Skyjack’s popular SJ12 feature U.S. Battery model US2200 XC2 6V deep-cycle batteries that provide a 232 amp-hour rating at a 20-hour rate, that is also designed to provide the highest rated capacity and fastest time to cycle up to rated capacity than any other deep-cycle battery in its class. These batteries also feature U.S. Battery’s SpeedCap design, making it easy to check water levels and to conduct routine maintenance, which includes checking water levels and topping off each cell to the battery manufacturer’s recommended levels as needed. 

Proper maintenance also includes visual inspections that require looking for clean terminals and wiring, then making repairs as necessary. Performing regular equalization charges at least once per month is also an important part of a proper maintenance routine that can prevent stratification and extend the service life of your batteries.

In addition to getting the right replacement batteries, the depth of discharge and regular maintenance are also key to making your vertical lift’s batteries last longer. Starting with a higher quality battery, such as what the vertical mast originally was equipped with, is a good start. It’s best to follow-up with ensuring that the batteries are limited to being discharged at no less than 50-percent. A 50-percent Depth Of Discharge (DOD), can be determined by first applying a full charge to the batteries, and the run time increases, regularly check the state of charge with a simple hydrometer. Battery manufacturers typically have a specific gravity chart that shows what the hydrometer will read at full charge, and also identify when it reaches various percentages of discharge. Periodically checking the hydrometer readings will give you a good idea of how much run-time the batteries can operate before reaching 50-percent discharge. Charging the batteries at this level, or before 50-percent DOD, will greatly promote longer service life.

With the right set of replacement batteries and routine maintenance, many construction crews and equipment rental facilities report that they have averaged five to seven years out of their batteries.